Patents by Inventor Jon R. Sauer

Jon R. Sauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9758824
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: September 12, 2017
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jon R. Sauer, Bart J. Van Zeghbroeck
  • Patent number: 9410923
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 9, 2016
    Assignee: Life Technologies Corporation
    Inventors: Jon R. Sauer, Bart J. Van Zeghbroeck
  • Patent number: 9228976
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 5, 2016
    Assignee: Life Technologies Corporation
    Inventors: Jon R. Sauer, Bart J. Van Zeghbroeck
  • Publication number: 20150284790
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Jon R. Sauer, Bart J. Van Zeghbroeck
  • Publication number: 20140021048
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jon R. SAUER, Bart J. VAN ZEGHBROECK
  • Publication number: 20130264204
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 10, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jon R. Sauer, Bart J. van Zeghbroeck
  • Publication number: 20130068619
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jon R. Sauer, Bart J. van Zeghbroeck
  • Publication number: 20120199485
    Abstract: A system and method employ at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region. A method for manufacturing forms such a semiconductor device. The system and method can be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand. The current has characteristics representative of the component of the polymer, such as characteristics representative of the detected base of the DNA or RNA strand.
    Type: Application
    Filed: March 1, 2012
    Publication date: August 9, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jon R. SAUER, Bart J. Van Zeghbroeck
  • Publication number: 20080119366
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Inventors: Jon R. Sauer, Bart J. Van Zeghbroeck
  • Patent number: 7001792
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand, proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: February 21, 2006
    Assignee: Eagle Research & Development, LLC
    Inventors: Jon R. Sauer, Bart J. van Zeghbroeck
  • Publication number: 20030211502
    Abstract: A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand, proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand.
    Type: Application
    Filed: October 24, 2002
    Publication date: November 13, 2003
    Inventors: Jon R. Sauer, Bart J. van Zeghbroeck
  • Patent number: 5034944
    Abstract: Apparatus for controlling the transition of a number of lasers that are transmitting light to an optical bus from an off state to a sub-threshold bias state so as to minimize the transmission of light from lasers in the sub-threshold bias state. The apparatus places each laser in the sub-threshold bias state a predetermined time before it is to transmit data to the bus; and then, the apparatus places each laser in the off state after the data transmission has occurred. The lasers transmit in a sequential order onto the optical bus.
    Type: Grant
    Filed: October 31, 1988
    Date of Patent: July 23, 1991
    Assignee: AT&T Bell Laboratories
    Inventors: Gary J. Grimes, Lawrence J. Haas, Jon R. Sauer
  • Patent number: 4898444
    Abstract: A non-invasive optical fiber coupler for coupling light into an optical fiber bus through the cladding surrounding the optical fiber bus without bending the optical fiber bus. The coupler comprises a tap optical fiber free end adjacent to and facing a region of straight optical fiber bus with the tap fiber free end and optical fiber bus region encapsulated with a junction media having substantially the same index of refraction as the cladding of the optical fiber bus. Since the bus cladding is not removed nor is the optical fiber bus bent, there is no additional light lost due to the coupler from the optical fiber bus.
    Type: Grant
    Filed: November 30, 1988
    Date of Patent: February 6, 1990
    Assignees: American Telephone and Telegraph Company, AT&T Information Systems Inc.
    Inventors: Gary J. Grimes, Lawrence J. Haas, Jon R. Sauer