Patents by Inventor Jon T. Fitch

Jon T. Fitch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230221738
    Abstract: In one embodiment, a method for decreasing a humidity level in an information handling system includes: receiving, by a sound field chamber, an incoming airflow, the incoming airflow having a humidity level corresponding to an amount of water vapor in the incoming airflow; identifying, by a humidity controller, the humidity level of the incoming airflow; determining, by the humidity controller, that the humidity level is greater than a threshold humidity level; and in response to determining that the humidity level is greater than the threshold humidity level: causing, by the humidity controller, a sound source of the information handling system to generate a sound field within the sound field chamber, the sound field comprised of sound waves, the sound waves causing an acoustic agglomeration of the water vapor, the acoustic agglomeration causing the humidity level to decrease.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 13, 2023
    Inventors: Chris E. Peterson, Sandor Farkas, Steven T. Embleton, Jon T. Fitch
  • Patent number: 11579074
    Abstract: An information handling system includes a corrosion controller that may monitor a corrosion sensor array, and determine a type of the corrosion based on a location of a corrosion sensor. The corrosion type may include humidity driven corrosion and non-humidity driven corrosion.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 14, 2023
    Assignee: Dell Products L.P.
    Inventors: Jon T. Fitch, Steven Embleton, Sandor Farkas, Danny King
  • Publication number: 20220326747
    Abstract: In one embodiment, a method for reducing corrosion in an information handling system includes receiving a system setting indicating one or more operation modes; identifying an ambient temperature of the information handling system, the ambient temperature captured by one or more sensors of the information handling system; identifying a humidity level of the information handling system, the humidity level captured by the one or more sensors; identifying a corrosion risk value based on the ambient temperature and the humidity level; determining that the corrosion risk value is greater than a threshold corrosion risk value; and in response to determining that the corrosion risk value is greater than the threshold corrosion risk value: modifying one or more device threshold settings based on the system setting and the corrosion risk value, wherein modifying the one or more device threshold settings causes the ambient temperature to increase and the humidity level to decrease.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 13, 2022
    Inventors: Jon T. Fitch, Sandor T. Farkas, Joseph D. King, Steven T. Embleton
  • Publication number: 20220283079
    Abstract: An information handling system includes a corrosion controller that may monitor a corrosion sensor array, and determine a type of the corrosion based on a location of a corrosion sensor. The corrosion type may include humidity driven corrosion and non-humidity driven corrosion.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 8, 2022
    Inventors: Jon T. Fitch, Steven Embleton, Sandor Farkas, Danny King
  • Patent number: 5627395
    Abstract: A vertically raised transistor (10) is formed having a substrate (12). A conductive plug region (22) is selectively or epitaxially formed to vertically elevate the transistor (10). A first doped region (16a) and a second doped region (16b) are each electrically coupled to the conductive plug region (22) via sidewall contacts. The doped regions (16a and 16b) are used to form current electrode regions (26) within the conductive plug region (22). A channel region separates the current electrodes (26). A gate dielectric layer (28) is formed to overlie the channel region. A conductive layer (30) is formed to overlie the gate dielectric layer (28). Conductive layer (30) forms a gate electrode for the transistor (10). The vertical raised transistor (10) and conductive plug region (22) provide improved device isolation and improved device operation.
    Type: Grant
    Filed: November 2, 1995
    Date of Patent: May 6, 1997
    Assignee: Motorola Inc.
    Inventors: Keith E. Witek, Jon T. Fitch, Carlos A. Mazure
  • Patent number: 5612563
    Abstract: A transistor (10) has a substrate (12) and a diffusion (14). A gate conductive layer (18) overlies the substrate (12) and has a sidewall formed by an opening that exposes the substrate (12). A sidewall dielectric layer (22) formed laterally adjacent the conductive layer (18) sidewall functions as a gate dielectric for the transistor (10). A conductive region is formed within the opening. The conductive region has a first current electrode region (28) and a second control electrode region (34) and a channel region (30) laterally adjacent the sidewall dielectric layer (22). A plurality of transistors, each in accordance with transistor (10), can be stacked in a vertical manner to form logic gates such as NMOS or PMOS NAND, NOR, and inverter gates, and/or CMOS NAND, NOR, and inverter gates with one or more inputs.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: March 18, 1997
    Assignee: Motorola Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek
  • Patent number: 5578850
    Abstract: A vertical transistor (10) has a substrate (12) and a control electrode conductive layer (18), which functions as a control or gate electrode. A sidewall dielectric layer (22) is formed laterally adjacent the control electrode conductive layer (18) and overlying the substrate (12). The conductive layer (18) at least partially surrounds a channel region (30). A vertical conductive region is formed within a device opening wherein a bottom portion of the conductive region is a first current electrode (28). A middle portion of the vertical conductive region is the channel region (30). A top portion of the vertical conductive region is a second current electrode (34).
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: November 26, 1996
    Assignee: Motorola Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek
  • Patent number: 5554870
    Abstract: An integrated circuit (10) has a vertical device, such as a transistor (71), formed by epitaxial growth from a substrate (12) and a horizontal device, such as a transistor (73, 75) grown epitaxially from the vertical device. In accordance with one embodiment of the invention, all six transistors of an SRAM cell can be formed in single crystal material for improved device characteristics and increased cell density. Utilization of various combinations of vertical and horizontal devices permits a large degree of vertical integration within semiconductor devices.
    Type: Grant
    Filed: August 2, 1995
    Date of Patent: September 10, 1996
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Suresh Venkatesan, Keith E. Witek
  • Patent number: 5527723
    Abstract: A vertically raised transistor (10) is formed having a substrate (12). A conductive plug region (22) is selectively or epitaxially formed to vertically elevate the transistor (10). A first doped region (16a) and a second doped region (16b) are each electrically coupled to the conductive plug region (22) via sidewall contacts. The doped regions (16a and 16b) are used to form current electrode regions (26) within the conductive plug region (22). A channel region separates the current electrodes (26). A gate dielectric layer (28) is formed to overlie the channel region. A conductive layer (30) is formed to overlie the gate dielectric layer (28). Conductive layer (30) forms a gate electrode for the transistor (10). The vertical raised transistor (10) and conductive plug region (22) provide improved device isolation and improved device operation.
    Type: Grant
    Filed: October 3, 1994
    Date of Patent: June 18, 1996
    Assignee: Motorola, Inc.
    Inventors: Keith E. Witek, Jon T. Fitch, Carlos A. Mazure
  • Patent number: 5510645
    Abstract: A method for forming an air region or an air bridge overlying a base layer (12). Air regions (20a, 20b, 28a, and 48) are formed overlying the base layer (12) to provide for improved dielectric isolation of adjacent conductive layers, provide air-isolated conductive interconnects, and/or form many other microstructures or microdevices. The air regions (20a, 20b, 28a, and 48) are formed by either selectively removing a sacrificial spacer (16a and 16b) or by selectively removing a sacrificial layer (28, 40). The air regions (20a, 20b, 28a, and 48) are sealed, enclosed, or isolated by either a selective growth process or by a non-conformal deposition technique. The air regions (20a, 20b, 28a, and 48) may be formed under any pressure, gas concentration, or processing condition (i.e. temperature, etc.). The air regions (20a, 20b, 28a, and 48) may be formed at any level within an integrated circuit.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: April 23, 1996
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Papu Maniar, Keith E. Witek, Jerry Gelatos, Reza Moazzami, Sergio A. Ajuria
  • Patent number: 5451538
    Abstract: A vertical transistor (10) has a substrate (12) and a control electrode conductive layer (18), which functions as a control or gate electrode. A sidewall dielectric layer (22) is formed laterally adjacent the control electrode conductive layer (18) and overlying the substrate (12). The conductive layer (18) at least partially surrounds a channel region (30). A vertical conductive region is formed within a device opening wherein a bottom portion of the conductive region is a first current electrode (28). A middle portion of the vertical conductive region is the channel region (30). A top portion of the vertical conductive region is a second current electrode (34). A capacitor (69) is formed overlying and coupled to the vertical transistor (10) in order to form a dynamic random access memory (DRAM) cell.
    Type: Grant
    Filed: April 20, 1994
    Date of Patent: September 19, 1995
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek
  • Patent number: 5414289
    Abstract: A vertical transistor (10) has a substrate (12) and a control electrode conductive layer (18), which functions as a control or gate electrode. A sidewall dielectric layer (22) is formed laterally adjacent the control electrode conductive layer (18) and overlying the substrate (12). The conductive layer (18) at least partially surrounds a channel region (30). A vertical conductive region is formed within a device opening wherein a bottom portion of the conductive region is a first current electrode (28). A middle portion of the vertical conductive region is the channel region (30). A top portion of the vertical conductive region is a second current electrode (34).
    Type: Grant
    Filed: November 9, 1993
    Date of Patent: May 9, 1995
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek
  • Patent number: 5414288
    Abstract: A method for forming a vertical transistor (10) begins by providing a substrate (12). A conductive layer (16) is formed overlying the substrate (12). A first current electrode (26), a second current electrode (30), and a channel region (28) are each formed via one of either selective growth, epitaxial growth, in-situ doping, and/or ion implantation. A gate electrode or control electrode (34) is formed laterally adjacent the channel region (28). A selective/epitaxial growth step is used to connect the conductive layer (16) to the control electrode (34) and forms a control electrode interconnect which is reliable and free from electrical short circuits to the current electrodes (26 and 30). The transistor (10) may be vertically stacked to form compact inverter circuits.
    Type: Grant
    Filed: February 16, 1994
    Date of Patent: May 9, 1995
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek
  • Patent number: 5398200
    Abstract: A semiconductor memory device is formed having a substrate (12). A diffusion (14) is formed within the substrate (12). A first vertical transistor stack (122) is formed. A second vertical transistor stack (124) is formed. The first vertical transistor stack (122) has a transistor (100) underlying a transistor (104). The second vertical transistor stack (124) has a transistor (102) underlying a transistor (106). The transistors (100 and 104) are connected in series, and the transistors (102 and 106) are connected in series. In a preferred form, transistors (100 and 102) are electrically connected as latch transistors for a semiconductor memory device and transistors (106 and 104) are connected as pass transistors. Two vertical stacks (126 and 128) form electrical interconnections (118 and 120) and resistive devices (134 and 138) for the semiconductor memory device.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: March 14, 1995
    Assignee: Motorola, Inc.
    Inventors: Carlos A. Mazure, Jon T. Fitch, James D. Hayden, Keith E. Witek
  • Patent number: 5393681
    Abstract: A vertically raised transistor (10) is formed having a substrate (12). A conductive plug region (22) is selectively or epitaxially formed to vertically elevate the transistor (10). A first doped region (16a) and a second doped region (16b) are each electrically coupled to the conductive plug region (22) via sidewall contacts. The doped regions (16a and 16b) are used to form current electrode regions (26) within the conductive plug region (22). A channel region separates the current electrodes (26). A gate dielectric layer (28) is formed to overlie the channel region. A conductive layer (30) is formed to overlie the gate dielectric layer (28). Conductive layer (30) forms a gate electrode for the transistor (10). The vertical raised transistor (10) and conductive plug region (22) provide improved device isolation and improved device operation.
    Type: Grant
    Filed: March 15, 1994
    Date of Patent: February 28, 1995
    Assignee: Motorola, Inc.
    Inventors: Keith E. Witek, Jon T. Fitch, Carlos A. Mazure
  • Patent number: 5376562
    Abstract: A transistor is formed as either a bipolar transistor (10) or an MOS transistor (11). Each transistor (10 or 11) has a substrate (12). Bipolar transistor (10) has a first current electrode (26) underlying a control electrode (28), and a second current electrode (32) overlying the control electrode (28). MOS transistor (11) has a first current electrode (54) underlying a channel region (56), and a source lightly doped region (58) and a source heavily doped region (60) overlying the channel region (56). A control electrode conductive layer (40) is laterally adjacent a sidewall dielectric layer (48), and sidewall dielectric layer (48) is laterally adjacent channel region (56). Conductive layer (40) functions as a gate electrode for transistor (11). Each of the transistors (10 and 11) is vertically integrated such as in a vertically integrated BiMOS circuit. Transistors (10 and 11) can be electrically isolated by isolation ( 64 and 66).
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: December 27, 1994
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek, James D. Hayden
  • Patent number: 5340754
    Abstract: A vertically raised transistor (10) is formed having a substrate (12). A conductive plug region (22) is selectively or epitaxially formed to vertically elevate the transistor (10). A first doped region (16a) and a second doped region (16b) are each electrically coupled to the conductive plug region (22) via sidewall contacts. The doped regions (16a and 16b) are used to form current electrode regions (26) within the conductive plug region (22). A channel region separates the current electrodes (26). A gate dielectric layer (28) is formed to overlie the channel region. A conductive layer (30) is formed to overlie the gate dielectric layer (28). Conductive layer (30) forms a gate electrode for the transistor (10). The vertical raised transistor (10) and conductive plug region (22) provide improved device isolation and improved device operation.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: August 23, 1994
    Assignee: Motorla, Inc.
    Inventors: Keith E. Witek, Jon T. Fitch, Carlos A. Mazure
  • Patent number: 5324673
    Abstract: A method for forming a vertical transistor (10) begins by providing a substrate (12). A conductive layer (16) is formed overlying the substrate (12). A first current electrode (26), a second current electrode (30), and a channel region (28) are each formed via one of either selective growth, epitaxial growth, in-situ doping, and/or ion implantation. A gate electrode or control electrode (34) is formed laterally adjacent the channel region (28). A selective/epitaxial growth step is used to connect the conductive layer (16) to the control electrode (34) and forms a control electrode interconnect which is reliable and free from electrical short circuits to the current electrodes (26 and 30). The transistor (10) may be vertically stacked to form compact inverter circuits.
    Type: Grant
    Filed: November 19, 1992
    Date of Patent: June 28, 1994
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek
  • Patent number: 5324683
    Abstract: A method for forming an air region or an air bridge overlying a base layer (12). Air regions (20a, 20b, 28a, and 48) are formed overlying the base layer (12) to provide for improved dielectric isolation of adjacent conductive layers, provide air-isolated conductive interconnects, and/or form many other microstructures or microdevices. The air regions (20a, 20b, 28a, and 48) are formed by either selectively removing a sacrificial spacer (16a and 16b) or by selectively removing a sacrificial layer (28, 40). The air regions (20a, 20b, 28a, and 48) are sealed, enclosed, or isolated by either a selective growth process or by a non-conformal deposition technique. The air regions (20a, 20b, 28a, and 48) may be formed under any pressure, gas concentration, or processing condition (i.e. temperature, etc.). The air regions (20a, 20b, 28a, and 48) may be formed at any level within an integrated circuit.
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: June 28, 1994
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Papu Maniar, Keith E. Witek, Jerry Gelatos, Reza Moazzami, Sergio A. Ajuria
  • Patent number: 5308788
    Abstract: A ramp activated low temperature quality epitaxial growth process. A substrate is pre-conditioned and a passivation layer overlying the substrate surface is formed. The substrate is introduced into a process chamber having a controlled temperature. A process chamber purge technique is used to remove oxygen and contaminants from the process chamber before epitaxial growth begins. A process gas, which has an epitaxial growth species, a process chamber purging species and other possible species, is introduced into the process chamber at a low temperature. The process gas and the passivation layer keep the process chamber environment and the substrate surface free from contamination and free from native oxide growth before and, in some cases, during epitaxial growth. The process chamber temperature is gradually elevated to initiate a quality epitaxial growth by starting growth relative to decomposition of the passivation layer.
    Type: Grant
    Filed: April 19, 1993
    Date of Patent: May 3, 1994
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Dean J. Denning, Carlos A. Mazure