Patents by Inventor Jonah DeWall

Jonah DeWall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885647
    Abstract: A sensor apparatus includes a resonator, a transducer, a damping resistor, a first switch, a filter stage, a second switch, and a noise rejection stage. The transducer is configured to detect a position of the resonator. The damping resistor is configured to electrostatically actuate the transducer and convert a thermomechanical noise of the resonator to an electromechanical noise. The first switch is configured to receive a first signal from the transducer. The filter stage is configured to receive the first signal and adjust a phase and a gain of the first signal and output a filtered first signal. The second switch is configured to receive a second signal from the transducer. The noise rejection stage is configured to receive the filtered first signal and the second signal and reduce the filtered first signal from an output signal.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: January 30, 2024
    Assignee: ROHM Co., Ltd.
    Inventor: Jonah Dewall
  • Publication number: 20220252439
    Abstract: A sensor apparatus includes a resonator, a transducer, a damping resistor, a first switch, a filter stage, a second switch, and a noise rejection stage. The transducer is configured to detect a position of the resonator. The damping resistor is configured to electrostatically actuate the transducer and convert a thermomechanical noise of the resonator to an electromechanical noise. The first switch is configured to receive a first signal from the transducer. The filter stage is configured to receive the first signal and adjust a phase and a gain of the first signal and output a filtered first signal. The second switch is configured to receive a second signal from the transducer. The noise rejection stage is configured to receive the filtered first signal and the second signal and reduce the filtered first signal from an output signal.
    Type: Application
    Filed: February 2, 2022
    Publication date: August 11, 2022
    Inventor: Jonah DEWALL
  • Publication number: 20220252635
    Abstract: A sensor apparatus includes a base, a tap, a channel, and a gate. The tap is adjacent the base and electrically coupled to the base. The channel is between the tap and the base. The gate is adjacent the channel and electrically coupled to the channel. The gate is separated from the channel by a gap. At least a portion of a charge flow in the channel is substantially parallel or antiparallel to an electric field between the gate and the channel. A triode capacitor system includes a channel region, a gate region, and a processor. The gate region is separated from the channel region by a gap. The processor is coupled to a base contact, a tap contact, and a gate contact and configured to measure a distance of the gap based on a potential difference between the base contact and the tap contact.
    Type: Application
    Filed: February 2, 2022
    Publication date: August 11, 2022
    Inventor: Jonah DEWALL
  • Patent number: 10167191
    Abstract: A method of fabricating a semiconductor device, includes, in part, growing a first layer of oxide on a surface of a first semiconductor substrate, forming a layer of insulating material on the oxide layer, patterning and etching the insulating material and the first oxide layer to form a multitude of oxide-insulator structures and further to expose the surface of the semiconductor substrate, growing a second layer of oxide in the exposed surface of the semiconductor substrate, and removing the second layer of oxide thereby to form a cavity in which a MEMS device is formed. The process of growing oxide in the exposed surface of the cavity and removing this oxide may be repeated until the cavity depth reaches a predefined value. Optionally, a multitude of bump stops is formed in the cavity.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: January 1, 2019
    Assignee: KIONIX, INC.
    Inventors: Martin Heller, Jonah deWall, Andrew Hocking, Kristin Lynch, Sangtae Park
  • Publication number: 20180282154
    Abstract: A method of fabricating a semiconductor device, includes, in part, growing a first layer of oxide on a surface of a first semiconductor substrate, forming a layer of insulating material on the oxide layer, patterning and etching the insulating material and the first oxide layer to form a multitude of oxide-insulator structures and further to expose the surface of the semiconductor substrate, growing a second layer of oxide in the exposed surface of the semiconductor substrate, and removing the second layer of oxide thereby to form a cavity in which a MEMS device is formed. The process of growing oxide in the exposed surface of the cavity and removing this oxide may be repeated until the cavity depth reaches a predefined value. Optionally, a multitude of bump stops is formed in the cavity.
    Type: Application
    Filed: August 24, 2017
    Publication date: October 4, 2018
    Inventors: Martin Heller, Jonah deWall, Andrew Hocking, Kristin Lynch, Sangtae Park
  • Patent number: 10030976
    Abstract: A gyroscope includes a resonator, a transducer, and a comparator. The comparator is designed to receive an input signal from the transducer and compare the input signal with a reference signal to produce an output signal. Rising and falling edge transitions of the output signal are substantially synchronized with a motion of the resonator along a sense-axis of the transducer.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: July 24, 2018
    Assignee: Kionix, Inc.
    Inventor: Jonah DeWall
  • Publication number: 20160334213
    Abstract: A gyroscope includes a resonator, a transducer, and a comparator. The comparator is designed to receive an input signal from the transducer and compare the input signal with a reference signal to produce an output signal. Rising and falling edge transitions of the output signal are substantially synchronized with a motion of the resonator along a sense-axis of the transducer.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 17, 2016
    Inventor: Jonah DeWall