Patents by Inventor Jonas Olsson

Jonas Olsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122574
    Abstract: Systems, methods, and apparatuses for confidence mapping of shear wave measurements are disclosed. Confidence maps of shear wave image measurements may be generated from one or more confidence factors. Masking of graphical overlays of tissue stiffness values, based at least in part on the confidence map is disclosed. The confidence map and/or masked graphical overlays of tissue stiffness values may be superimposed on ultrasound images and provided on a display.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 18, 2024
    Inventors: Ji Cao, Lars Jonas Olsson, Vijay Thakur Shamdasani, David Wesley Clark, Hua Xie, Jean-Luc Francois-Marie Robert, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy
  • Patent number: 11883237
    Abstract: Systems, methods, and apparatuses for confidence mapping of shear wave measurements are disclosed. Confidence maps of shear wave image measurements may be generated from one or more confidence factors. Masking of graphical overlays of tissue stiffness values, based at least in part on the confidence map is disclosed. The confidence map and/or masked graphical overlays of tissue stiffness values may be superimposed on ultrasound images and provided on a display.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: January 30, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ji Cao, Lars Jonas Olsson, Vijay Thakur Shamdasani, David Wesley Clark, Hua Xie, Jean-Luc Francois-Marie Robert, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy
  • Publication number: 20230363742
    Abstract: Systems and methods for providing data for visualization and data for quantification are disclosed herein. The data for visualization may be used to generate images to provide to a user on a display. The data for quantification may be used to calculate various physiologically relevant parameters, such as hepato-renal index (HRI) values. In some examples, the quantification data may not be used to generate images. In some examples, a user may select regions of interest (ROIs) in the images generated from the visualization data and the corresponding quantification data for the ROIs may be used to calculate one or more parameters. The visualization data and quantification data may be generated from different imaging modes or same imaging modes with different data processing in some examples.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 16, 2023
    Inventors: William Tao Shi, Hua Xie, Carolina Amador Carrascal, Man Nguyen, Zhaowen Yang, Charles Tremblay-Darveau, Lars Jonas Olsson, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy, Vijay Thakur Shamdasani
  • Patent number: 11719813
    Abstract: An ultrasonic diagnostic imaging system produces spatially compounded trapezoidal sector images by combining component frames acquired from different look directions. A virtual apex scan format is used such that each scanline of a component frame emanates from a different point on the face of an array transducer and is steered at a different scanning angle. For different component frames the scanlines are steered at respectively different angles. In an illustrated example, the scanlines of each component frame are incremented by five degrees relative to the corresponding scanlines in a reference component frame. When the component frames are combined for spatial compounding, the maximum number of component frames are combined over virtually the entire image field.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 8, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Lars Jonas Olsson
  • Patent number: 11382602
    Abstract: The present invention relates to ultrasound imaging systems and methods, more particularly, to ultrasound imaging systems and methods for a multi-plane acquisition for single- or bi-plane real-time imaging modes suitable for ultrasound imaging applications, such as quantification of tumor blood flow and tumor fractional blood volume. An ultrasound imaging apparatus can determine a plurality of image planes to scan through a region of interest, acquire echo information corresponding to each of the image planes, generate image information for each of the image planes, store the image information corresponding to each of the image planes; and display an ultrasound image comprising the region of interest, wherein the ultrasound image is rendered from generated image information for a selected image plane of the plurality of image planes or a bi-plane that is at angle to the plurality of image planes.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: July 12, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Patrice Jean Arsene Gauthier, Lars Jonas Olsson
  • Publication number: 20220202396
    Abstract: Systems, methods, and apparatuses for confidence mapping of shear wave measurements are disclosed. Confidence maps of shear wave image measurements may be generated from one or more confidence factors. Masking of graphical overlays of tissue stiffness values, based at least in part on the confidence map is disclosed. The confidence map and/or masked graphical overlays of tissue stiffness values may be superimposed on ultrasound images and provided on a display.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Inventors: Ji Cao, Lars Jonas Olsson, Vijay Thakur Shamdasani, David Wesley Clark, Hua Xie, Jean-Luc Francois-Marie Robert, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy
  • Patent number: 11304678
    Abstract: Systems, methods, and apparatuses for confidence mapping of shear wave measurements are disclosed. Confidence maps of shear wave image measurements may be generated from one or more confidence factors. Masking of graphical overlays of tissue stiffness values, based at least in part on the confidence map is disclosed. The confidence map and/or masked graphical overlays of tissue stiffness values may be superimposed on ultrasound images and provided on a display.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: April 19, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ji Cao, Lars Jonas Olsson, Vijay Thakur Shamdasani, David Wesley Clark, Hua Xie, Jean-Luc Francois-Marie Robert, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy
  • Patent number: 10939895
    Abstract: The present invention relates to a method for providing three-dimensional ultrasound images of a volume (50) and an ultrasound imaging system (10). In particular, the current invention applies to live three-dimensional imaging. To maintain a steady frame rate of the displayed images even if a user changes a region of interest and, therewith, the size of the volume (50) to be scanned, it is contemplated to adjust a density of the scanning lines within the volume (50) as a function of a size of the volume while maintaining a total number of scanning lines across the volume (50).
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: March 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Richard Allen Snyder, Chicheong Stephen So, Martin James Moynihan, Lars Jonas Olsson, Lynette May Ward
  • Publication number: 20190357886
    Abstract: Systems, methods, and apparatuses for confidence mapping of shear wave measurements are disclosed. Confidence maps of shear wave image measurements may be generated from one or more confidence factors. Masking of graphical overlays of tissue stiffness values, based at least in part on the confidence map is disclosed. The confidence map and/or masked graphical overlays of tissue stiffness values may be superimposed on ultrasound images and provided on a display.
    Type: Application
    Filed: January 9, 2018
    Publication date: November 28, 2019
    Inventors: Ji Cao, Lars Jonas Olsson, Vijay Thakur Shamdasani, David Wesley Clark, Hua Xie, Jean-Luc Francois-Marie Robert, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy
  • Publication number: 20190357889
    Abstract: The present invention relates to ultrasound imaging systems and methods, more particularly, to ultrasound imaging systems and methods for a multi-plane acquisition for single- or bi-plane real-time imaging modes suitable for ultrasound imaging applications, such as quantification of tumor blood flow and tumor fractional blood volume. An ultrasound imaging apparatus can determine a plurality of image planes to scan through a region of interest, acquire echo information corresponding to each of the image planes, generate image information for each of the image planes, store the image information corresponding to each of the image planes; and display an ultrasound image comprising the region of interest, wherein the ultrasound image is rendered from generated image information for a selected image plane of the plurality of image planes or a bi-plane that is at angle to the plurality of image planes.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: Thomas Patrice Jean Arsene Gauthier, Lars Jonas Olsson
  • Publication number: 20190310367
    Abstract: An ultrasonic diagnostic imaging system produces spatially compounded trapezoidal sector images by combining component frames acquired from different look directions. A virtual apex scan format is used such that each scanline of a component frame emanates from a different point on the face of an array transducer and is steered at a different scanning angle. For different component frames the scanlines are steered at respectively different angles. In an illustrated example, the scanlines of each component frame are incremented by five degrees relative to the corresponding scanlines in a reference component frame. When the component frames are combined for spatial compounding, the maximum number of component frames are combined over virtually the entire image field.
    Type: Application
    Filed: May 29, 2019
    Publication date: October 10, 2019
    Inventor: Lars Jonas Olsson
  • Patent number: 10405835
    Abstract: The present invention relates to ultrasound imaging systems and methods, more particularly, to ultrasound imaging systems and methods for a multi-plane acquisition for single- or bi-plane real-time imaging modes suitable for ultrasound imaging applications, such as quantification of tumor blood flow and tumor fractional blood volume. An ultrasound imaging apparatus can determine a plurality of image planes to scan through a region of interest, acquire echo information corresponding to each of the image planes, generate image information for each of the image planes, store the image information corresponding to each of the image planes; and display an ultrasound image comprising the region of interest, wherein the ultrasound image is rendered from generated image information for a selected image plane of the plurality of image planes or a bi-plane that is at angle to the plurality of image planes.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: September 10, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Patrice Jean Arsene Gauthier, Lars Jonas Olsson
  • Patent number: 10345444
    Abstract: An ultrasonic diagnostic imaging system produces spatially compounded trapezoidal sector images by combining component frames acquired from different look directions. A virtual apex scan format is used such that each scanline of a component frame emanates from a different point (El, En) on the face of an array transducer (12) and is steered at a different scanning angle. For different component frames the scanlines are steered at respectively different angles. In the illustrated example, the scanlines of each component frame are incremented by five degrees relative to the corresponding scanlines in a reference component frame. When the component frames are combined for spatial compounding, the maximum number of component frames are combined over virtually the entire image field.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: July 9, 2019
    Assignee: Koninklijke Philips N.V.
    Inventor: Lars Jonas Olsson
  • Publication number: 20170007207
    Abstract: The present invention relates to ultrasound imaging systems and methods, more particularly, to ultrasound imaging systems and methods for a multi-plane acquisition for single- or bi-plane real-time imaging modes suitable for ultrasound imaging applications, such as quantification of tumor blood flow and tumor fractional blood volume. An ultrasound imaging apparatus can determine a plurality of image planes to scan through a region of interest, acquire echo information corresponding to each of the image planes, generate image information for each of the image planes, store the image information corresponding to each of the image planes; and display an ultrasound image comprising the region of interest, wherein the ultrasound image is rendered from generated image information for a selected image plane of the plurality of image planes or a bi-plane that is at angle to the plurality of image planes.
    Type: Application
    Filed: January 19, 2015
    Publication date: January 12, 2017
    Inventors: Thomas Patrice Jean Arsene Gauthier, Lars Jonas Olsson
  • Publication number: 20160282467
    Abstract: An ultrasonic diagnostic imaging system produces spatially compounded trapezoidal sector images by combining component frames acquired from different look directions. A virtual apex scan format is used such that each scanline of a component frame emanates from a different point (El, En) on the face of an array transducer (12) and is steered at a different scanning angle. For different component frames the scanlines are steered at respectively different angles. In the illustrated example, the scanlines of each component frame are incremented by five degrees relative to the corresponding scanlines in a reference component frame. When the component frames are combined for spatial compounding, the maximum number of component frames are combined over virtually the entire image field.
    Type: Application
    Filed: April 24, 2014
    Publication date: September 29, 2016
    Inventor: LARS JONAS OLSSON
  • Publication number: 20140358006
    Abstract: The present invention relates to a method for providing three-dimensional ultrasound images of a volume (50) and an ultrasound imaging system (10). In particular, the current invention applies to live three-dimensional imaging. To maintain a steady frame rate of the displayed images even if a user changes a region of interest and, therewith, the size of the volume (50) to be scanned, it is contemplated to adjust a density of the scanning lines within the volume (50) as a function of a size of the volume while maintaining a total number of scanning lines across the volume (50).
    Type: Application
    Filed: November 1, 2012
    Publication date: December 4, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Richard Allen Snyder, Chicheong Stephen So, Martin James Moynihan, Lars Jonas Olsson, Lynette May Ward
  • Patent number: 8852107
    Abstract: An ultrasonic diagnostic imaging system produces an extended field of view (EFOV) image. A 3D imaging probe is moved along the skin of a patient above the anatomy which is to be included in the EFOV image. As the probe is moved, images are acquired from a plurality of differently oriented image planes such as a sagittal plane and a transverse plane. As the probe is moved the image data of successive planes of one of the orientations is compared to estimate the motion of the probe. These motion estimates are used to position a succession of images acquired in one of the orientations accurately with respect to each other in an EFOV display format. The motion estimates are also used to display a graphic on the display screen which indicates the progress of the scan to the user as the probe is being moved. The progress may be indicated in terms of probe velocity, distance traveled, or the path traversed by the moving probe.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: October 7, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Yangmo Yoo, James Jago, Jing-Ming Jong, Robert Randall Entrekin, Martin Anderson, Lars Jonas Olsson
  • Publication number: 20130268396
    Abstract: A method and system for providing personalized application recommendations to users of electronic devices. Contextual information is used to build a personalized user knowledge base. The information stored in the personalized user knowledge base may be used to locate applications that may be of interest to the user.
    Type: Application
    Filed: September 6, 2011
    Publication date: October 10, 2013
    Inventors: Markus Agevik, Andreas Munchmeyer, Jonas Olsson
  • Patent number: 8539838
    Abstract: An ultrasonic diagnostic imaging system produces an extended field of view (EFOV) image. A 3D imaging probe is moved along the skin of a patient above the anatomy which is to be included in the EFOV image. As the probe is moved, images are acquired from a plurality of differently oriented image planes such as a sagittal plane and a transverse plane. As the probe is moved the image data of successive planes of one of the orientations is compared to estimate the motion of the probe. These motion estimates are used to position a succession of images acquired in one of the orientations accurately with respect to each other in an EFOV display format. The display format may be either a 2D EFOV image or a 3D EFOV image.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: September 24, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Yangmo Yoo, James Jago, Jing-Ming Jong, Robert Randall Entrekin, Martin Anderson, Lars Jonas Olsson
  • Publication number: 20110237953
    Abstract: The present invention relates to an ultrasound transducer probe 100 having an array of transducer elements 110 for transmitting ultrasound transmit pulses and receiving echo signals in response to these transmit pulses. More precisely, the invention refers to a front-end circuit 300, 300? or 300? preconnected to such an ultrasound transducer probe, wherein said front-end circuit, which may e.g. be realized as an application-specific integrated circuit (ASIC) with given input voltage constraints prescribing a limited supply voltagein1, comprises a transmission stage 301 which includes a branched voltage control line 302 or lines with two transmit branches 302a and 302b being respectively connected to a different terminal of each transducer element 110 for providing each of these transducer elements with a differential excitation or pulse voltageop whose amplitude level is up to twice the voltage levelin1 of the single-ended front-end circuit 300, 300? or 300? which is supplied by voltage control line 302.
    Type: Application
    Filed: December 1, 2009
    Publication date: September 29, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Lars Jonas Olsson, Andrew Robinson, Richard Betts