Patents by Inventor Jonathan B. Pfeiffer

Jonathan B. Pfeiffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11966053
    Abstract: Systems and methods of dispersion compensation in an optical device are disclosed. A holographic optical element may include a set of different holograms in a grating medium. Each hologram in the set may have a corresponding grating vector with a grating frequency and direction. The directions of the grating vectors may vary as a function of the grating frequency. Different holograms in the set may diffract light in a particular direction so that the light emerges from a boundary of the grating medium in a single given direction regardless of wavelength. A prism may be used to couple light into the grating medium. The prism may be formed using materials having dispersion properties that are similar to the dispersion properties of the grating material. The prism may have an input face that receives perpendicular input light. The prism may include multiple portions having different refractive indices.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: April 23, 2024
    Assignee: Apple Inc.
    Inventors: Jonathan B. Pfeiffer, Adam C. Urness, Friso Schlottau, Mark R. Ayres, Vikrant Bhakta
  • Publication number: 20240103273
    Abstract: A display may include a waveguide. An input coupler may couple image light into the waveguide and an output coupler may couple the image light out of the waveguide. A surface relief grating on the waveguide may couple infrared light into the waveguide and may couple the infrared light out of the waveguide. The surface relief grating may additionally or alternatively couple reflected infrared light into the waveguide and out of the waveguide and towards an infrared sensor. The surface relief grating may also form a cross-coupler for the image light. The infrared sensor may gather infrared sensor data based on the reflected infrared light. Control circuitry may perform gaze tracking operations based on the infrared sensor data. The input and output couplers may also be formed from surface relief gratings or may include other optical components.
    Type: Application
    Filed: February 4, 2022
    Publication date: March 28, 2024
    Inventors: Francesco Aieta, Byron R. Cocilovo, Jonathan B. Pfeiffer, Se Baek Oh
  • Publication number: 20230314796
    Abstract: The display may include a waveguide that directs light towards an eye box. The waveguide may include first and second media layers that are edge-coupled at an interface. The first media layer may include a louvered mirror cross-coupler that redirects the light towards the second media layer. The second media layer may include a volume hologram output coupler that couples the light out of the waveguide. Additional layers may be interposed between the first media layer and waveguide substrates. The additional layers may help confine the light within the first media layer as the light propagates such that all of the light enters the second media layer through the interface. This may configure the waveguide to occupy a minimal amount of space within the display while also providing the eye box with as bright and uniform an image as possible.
    Type: Application
    Filed: January 12, 2023
    Publication date: October 5, 2023
    Inventors: Friso Schlottau, Byron R. Cocilovo, Jonathan B. Pfeiffer
  • Patent number: 11740465
    Abstract: A head-mounted electronic device may include a display with an optical combiner. The combiner may include a waveguide with first and second output couplers. The first output coupler may couple a first portion of image light at visible wavelengths out of the waveguide and towards an eye box. The second output coupler may couple a second portion of the image light at near-infrared wavelengths out of the waveguide and towards the surrounding environment. The second portion of the image light may include an authentication code that is used by a secondary device to authenticate the head-mounted device and/or may include a pattern that serves to prevent camera equipment in the surrounding environment from capturing accurate facial recognition information from a user while wearing the head-mounted device.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: August 29, 2023
    Assignee: Apple Inc.
    Inventors: Christopher M. Dodson, Jonathan B. Pfeiffer
  • Publication number: 20220066204
    Abstract: An electronic device may include a display that generates light for an optical system that redirects the light towards an eye box. The optical system may include a waveguide, a non-diffractive input coupler, a cross coupler, and an output coupler. The cross coupler may expand the light in a first direction. The cross coupler may perform an even number of diffractions on the light and may couple the light back into the waveguide at an angle suitable for total internal reflection. The output coupler may expand the light in a second direction while coupling the light out of the waveguide. The cross coupler may include surface relief gratings or holographic gratings embedded within the waveguide or formed in a separate substrate. The optical system may direct the light towards the eye box without chromatic dispersion and while supporting an expanded field of view and optical bandwidth.
    Type: Application
    Filed: May 26, 2020
    Publication date: March 3, 2022
    Inventors: Jonathan B. Pfeiffer, Francesco Aieta, Se Baek Oh, Friso Schlottau, Adam C. Urness
  • Publication number: 20220011496
    Abstract: An electronic device may include a waveguide with an input coupler and an output coupler. The input coupler may receive the image light from imaging optics. The input coupler may be an input coupling prism and the imaging optics may include lens elements. World light may be viewable at an eye box through the output coupler. Biasing, compensation, and/or prescription lenses may overlap the output coupler. The input coupling prism, the lens elements in the imaging optics, and/or one or more of the biasing, compensation, and prescription lenses may be formed from gradient index (GRIN) material. The GRIN material may have a gradient refractive index that varies in one or more gradient directions. Use of GRIN materials may minimize the volume required to form the device without sacrificing optical performance. In addition, the GRIN materials may compensate for dispersion and aberrations in the device.
    Type: Application
    Filed: September 22, 2021
    Publication date: January 13, 2022
    Inventors: Vikrant Bhakta, Scott M. DeLapp, Jonathan B. Pfeiffer, Hyungryul Choi, Guolin Peng
  • Publication number: 20220004006
    Abstract: An electronic device may include a display with an optical combiner. The combiner may include a waveguide and a cross coupler on the waveguide. The combiner may redirect light from a display module to an eye box while passing world light to the eye box within a field of view. The cross coupler may include surface relief gratings or other broadband gratings. The combiner may include an angular filter that at least partially overlaps the cross coupler. The cross coupler may include surface relief grating structures or other broadband gratings. The angular filter may include angled absorbers or diffractive gratings. The angular filter may prevent world light that would otherwise produce distracting flares at the eye box (e.g., world light incident on the waveguide outside the field of view such as high-incident angle light from an overhead light source) from passing to the cross coupler.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Jonathan B. Pfeiffer, Adam C. Urness
  • Publication number: 20210405380
    Abstract: An electronic device may include an optical system that redirects light from a display module towards an eye box along an optical path. The optical path may include a holographic coupler and a resolution-enhancing holographic element. The holographic element may include a first set of holograms and the coupler may include a second set of holograms. The first set of holograms may be characterized by a first set of selectivity curves having first primary lobes. The second set of holograms may be characterized by a second set of selectivity curves having second primary lobes that overlap the first primary lobes. This may configure the holographic element to narrow the second selectivity curves by diffracting some of the light out of the optical path, thereby optimizing the resolution of images in the light provided to the eye box.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: Adam C. Urness, Byron R. Cocilovo, Jonathan B. Pfeiffer
  • Publication number: 20210303851
    Abstract: A head-mounted electronic device may include a display with an optical combiner. The combiner may include a waveguide with first and second output couplers. The first output coupler may couple a first portion of image light at visible wavelengths out of the waveguide and towards an eye box. The second output coupler may couple a second portion of the image light at near-infrared wavelengths out of the waveguide and towards the surrounding environment. The second portion of the image light may include an authentication code that is used by a secondary device to authenticate the head-mounted device and/or may include a pattern that serves to prevent camera equipment in the surrounding environment from capturing accurate facial recognition information from a user while wearing the head-mounted device.
    Type: Application
    Filed: February 9, 2021
    Publication date: September 30, 2021
    Inventors: Christopher M. Dodson, Jonathan B. Pfeiffer
  • Publication number: 20200117003
    Abstract: Systems and methods of dispersion compensation in an optical device are disclosed. A holographic optical element may include a set of different holograms in a grating medium. Each hologram in the set may have a corresponding grating vector with a grating frequency and direction. The directions of the grating vectors may vary as a function of the grating frequency. Different holograms in the set may diffract light in a particular direction so that the light emerges from a boundary of the grating medium in a single given direction regardless of wavelength. A prism may be used to couple light into the grating medium. The prism may be formed using materials having dispersion properties that are similar to the dispersion properties of the grating material. The prism may have an input face that receives perpendicular input light. The prism may include multiple portions having different refractive indices.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Jonathan B. Pfeiffer, Adam C. Urness, Friso Schlottau, Mark R. Ayres, Vikrant Bhakta