Patents by Inventor Jonathan C. Doan

Jonathan C. Doan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10770760
    Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: September 8, 2020
    Assignee: ENOVIX CORPORATION
    Inventors: Christopher G. Castledine, David T. Fouchard, Jonathan C. Doan, Christopher J. Spindt, Robert M. Spotniz, James D. Wilcox, Ashok Lahiri, Murali Ramasubramanian
  • Publication number: 20200212493
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Application
    Filed: August 6, 2019
    Publication date: July 2, 2020
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Harrold J. RUST, III, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Jeremie J. DALTON, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin J. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20180151920
    Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).
    Type: Application
    Filed: May 6, 2016
    Publication date: May 31, 2018
    Inventors: Christopher G. CASTLEDINE, David T. FOUCHARD, Jonathan C. DOAN, Christopher J. SPINDT, Robert M. SPOTNIZ, James D. WILCOX, Ashok LAHIRI, Murali RAMASUBRAMANIAN
  • Patent number: 7866036
    Abstract: A micromirror device and a method of making the same are disclosed herein. The micromirror device comprises a mirror plate, hinge, and post each having an electrically conductive layer. One of the hinge, mirror plate, and post further comprises an electrically insulating layer. To enable the electrical connections between the conducting layers of the hinge, mirror plate, and post, the insulating layer is patterned.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: January 11, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, Jr.
  • Publication number: 20090039536
    Abstract: A micromirror device and a method of making the same are disclosed herein. The micromirror device comprises a mirror plate, hinge, and post each having an electrically conductive layer. One of the hinge, mirror plate, and post further comprises an electrically insulating layer. To enable the electrical connections between the conducting layers of the hinge, mirror plate, and post, the insulating layer is patterned.
    Type: Application
    Filed: October 14, 2008
    Publication date: February 12, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, JR.
  • Patent number: 7436573
    Abstract: A micromirror device and a method of making the same are disclosed herein. The micromirror device comprises a mirror plate, hinge, and post each having an electrically conductive layer. One of the hinge, mirror plate, and post further comprises an electrically insulating layer. To enable the electrical connections between the conducting layers of the hinge, mirror plate, and post, the insulating layer is patterned.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: October 14, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, Jr.
  • Patent number: 6960305
    Abstract: A method for making a spatial light modulator is disclosed, that comprises forming an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a hinge made of a transition metal nitride, followed by releasing the micromirrors in a spontaneous gas phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 1, 2005
    Assignee: Reflectivity, Inc
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Andrew G. Huibers, Jason S. Reid
  • Patent number: 6952302
    Abstract: A method and spatial light modulator are provided herein. The spatial light modulator has a higher resolution and an increased fill factor. The spatial light modulator also provides an increased contrast ratio. Furthermore, the spatial light modulator of the present invention can be operated in the absence of polarized light and that has improved electro-mechanical performance and robustness with respect to manufacturing. A method and its alternative are disclosed herein by the present invention for manufacturing the spatial light modulator.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: October 4, 2005
    Assignee: Reflectivity, Inc
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc, Jr.
  • Patent number: 6913942
    Abstract: A sacrificial layer and a method for applying said sacrificial layer in fabricating microelectromechanical devices are disclosed herein. The sacrificial layer comprises an early transition metal. Specifically, the sacrificial layer comprises an early transition metal element, an early transition metal alloy or an early transition metal silicide.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: July 5, 2005
    Assignee: Reflectvity, Inc
    Inventors: Satyadev R. Patel, Jonathan C. Doan
  • Patent number: 6849471
    Abstract: A method for processing microelectromechanical devices is disclosed herein. The method prevents the diffusion and interaction between sacrificial layers and structure layers of the microelectromechanical devices by providing selected barrier layers between consecutive sacrificial and structure layers.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: February 1, 2005
    Assignee: Reflectivity, Inc.
    Inventors: Satyadev R. Patel, Jonathan C. Doan
  • Patent number: 6804039
    Abstract: A method and an improved multilayer hinge structure for use in a micromirror device for a spatial light modulator are provided herein. The micromirror device presents a conductive, composite torsion hinge with improved mechanical reliability, achieved by optimizing the geometry of the hinge, which minimizes the amount of residual twist, fixed torsional stiffness and fixed rate of plastic deformation in the mechanically undesirable hinge element. A method and its alternatives are disclosed herein by the present invention for manufacturing such multilayer hinge structure.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: October 12, 2004
    Assignee: Reflectivity, Inc.
    Inventors: Jonathan C. Doan, Satyadev R. Patel
  • Publication number: 20040191946
    Abstract: A sacrificial layer and a method for applying said sacrificial layer in fabricating microelectromechanical devices are disclosed herein. The sacrificial layer comprises an early transition metal. Specifically, the sacrificial layer comprises an early transition metal element, an early transition metal alloy or an early transition metal silicide.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Inventors: Satyadev R. Patel, Jonathan C. Doan
  • Publication number: 20040191937
    Abstract: A method for processing microelectromechanical devices is disclosed herein. The method prevents the diffusion and interaction between sacrificial layers and structure layers of the microelectromechanical devices by providing selected barrier layers between consecutive sacrificial and structure layers.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Inventors: Satyadev R. Patel, Jonathan C. Doan
  • Publication number: 20040156089
    Abstract: A method and spatial light modulator are provided herein. The spatial light modulator has a higher resolution and an increased fill factor. The spatial light modulator also provides an increased contrast ratio. Furthermore, the spatial light modulator of the present invention can be operated in the absence of polarized light and that has improved electro-mechanical performance and robustness with respect to manufacturing. A method and its alternative are disclosed herein by the present invention for manufacturing the spatial light modulator.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc
  • Publication number: 20040035821
    Abstract: A method for making a spatial light modulator is disclosed, that comprises forming an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a hinge made of a transition metal nitride, followed by releasing the micromirrors in a spontaneous gas phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Application
    Filed: March 28, 2003
    Publication date: February 26, 2004
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Andrew G. Huibers, Jason S. Reid