Patents by Inventor Jonathan C. Schultz

Jonathan C. Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10246742
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 2, 2019
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Publication number: 20180173000
    Abstract: Apparatus and methods for coupling an optical beam from an optical source to a hi-tech system are described. A compact, low-cost beam-shaping and steering assembly may be located between the optical source and hi-tech system and provide automated adjustments to beam parameters such as beam position, beam rotation, and beam incident angles. The beam-shaping and steering assembly may be used to couple an elongated beam to a plurality of optical waveguides.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 21, 2018
    Inventors: Jonathan M. Rothberg, Paul E. Glenn, Jonathan C. Schultz, Benjamin Cipriany
  • Publication number: 20180175582
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 9617594
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: April 11, 2017
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Publication number: 20160369332
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Publication number: 20160341664
    Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
  • Publication number: 20160344156
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Patent number: 8263336
    Abstract: Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 11, 2012
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M Rothberg, James M. Bustillo, Mark J. Milgrew, Jonathan C. Schultz, David Marran, Todd M Rearick, Kim L. Johnson
  • Patent number: 8164742
    Abstract: An optomechanical switching device, a control system, and a graphical user interface for a photopolarimetric lidar standoff detection that employs differential-absorption Mueller matrix spectroscopy. An output train of alternate continuous-wave CO2 laser beams [ . . . L1:L2 . . . ] is directed onto a suspect chemical-biological (CB) aerosol plume or the land mass it contaminates (S) vis-à-vis the OSD, with L1 [L2] tuned on [detuned off] a resonant molecular absorption moiety of CB analyte. Both incident beams and their backscattered radiances from S are polarization-modulated synchronously so as to produce gated temporal voltage waveforms (scattergrams) recorded on a focus at the receiver end of a sensor (lidar) system. All 16 elements of the Mueller matrix (Mij) of S are measured via digital or analog filtration of constituent frequency components in these running scattergram data streams (phase-sensitive detection).
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: April 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur H. Carrieri, Erik S. Roese, David J. Owens, Jonathan C. Schultz, Michael V. Talbard, Pascal I. Lim, Kevin C. Hung, Jerold R. Bottiger
  • Publication number: 20120013392
    Abstract: Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: May 31, 2011
    Publication date: January 19, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. ROTHBERG, James M. BUSTILLO, Mark J. MILGREW, Jonathan C. SCHULTZ, David MARRAN, Todd M. REARICK, Kim L. JOHNSON
  • Publication number: 20110248320
    Abstract: Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: May 31, 2011
    Publication date: October 13, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. ROTHBERG, James M. BUSTILLO, Mark J. MILGREW, Jonathan C. SCHULTZ, David MARRAN, Todd M. REARICK, Kim L. JOHNSON
  • Publication number: 20100301398
    Abstract: Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: Ion Torrent Systems Incorporated
    Inventors: Jonathan M. Rothberg, James M. Bustillo, Mark J. Milgrew, Jonathan C. Schultz, David Marran, Todd M. Rearick, Kim L. Johnson
  • Patent number: 7737399
    Abstract: An analog Mueller matrix data acquisition system (AMMS) acquiring middle-infrared Mueller (M) matrices of backscattering surfaces. The M-elements are measured by means of an active photopolarimetric sensor. The AMMS records nine M-elements simultaneously in groups of four modulo 2 incident continuous-wave CO2 laser beams—one incident beam is tuned to a fundamental molecular absorption cross-section by the aerosol of detection interest (analytic wavelength ?a) while the other beam is detuned off that resonance band (reference wavelength ?r) and in the closest vicinity to ?a. Accordingly, those ?M elements exhibiting susceptible behavior to the aerosol analyte, driven on-then-off its molecular vibrational resonance band, cues an identification event thus providing detection decision information.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: June 15, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur H. Carrieri, David J. Owens, Jonathan C. Schultz
  • Patent number: D846128
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: April 16, 2019
    Assignee: Butterfly Network, Inc
    Inventors: Matthew de Jonge, Christopher Thomas McNulty, David Elgena, Stephen Christopher, Paul Maxted, Jonathan C. Schultz, Benjamin Chopra