Patents by Inventor Jonathan D. Short

Jonathan D. Short has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8409908
    Abstract: An apparatus for reducing photodiode thermal gain coefficient includes a bulk semiconductor material having a light-illumination side. The bulk semiconductor material includes a minority charge carrier diffusion length property configured to substantially match a predetermined hole diffusion length value and a thickness configured to substantially match a predetermined photodiode layer thickness. The apparatus also includes a dead layer coupled to the light-illumination side of the bulk semiconductor material, the dead layer having a thickness configured to substantially match a predetermined thickness value and wherein an absolute value of a thermal coefficient of gain due to the minority carrier diffusion length property of the bulk semiconductor material is configured to substantially match an absolute value of a thermal coefficient of gain due to the thickness of the dead layer.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: April 2, 2013
    Assignee: General Electric Company
    Inventors: Wen Li, Jonathan D. Short, George E. Possin
  • Patent number: 7916836
    Abstract: A CT detector includes a direct conversion material configured to generate electrical charge upon reception of x-rays, a plurality of metallized anodes configured to collect electrical charges generated in the direct conversion material, at least one readout device, and a redistribution layer having a plurality of electrical pathways configured to route the electrical charges from the plurality of metallized anodes to the at least one readout device. A plurality of switches is coupled to the plurality of electrical pathways between the plurality of metallized anodes and the at least one readout device, wherein each of the plurality of switches includes an input line electrically coupled to one of the plurality of metallized anodes, a first output node electrically coupled to the at least one readout device, and a second output node electrically coupled to at least one other switch of the plurality of switches.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: John Eric Tkaczyk, James Wilson Rose, Wen Li, Jonathan D. Short, Yanfeng Du
  • Publication number: 20110024711
    Abstract: An apparatus for reducing photodiode thermal gain coefficient includes a bulk semiconductor material having a light-illumination side. The bulk semiconductor material includes a minority charge carrier diffusion length property configured to substantially match a predetermined hole diffusion length value and a thickness configured to substantially match a predetermined photodiode layer thickness. The apparatus also includes a dead layer coupled to the light-illumination side of the bulk semiconductor material, the dead layer having a thickness configured to substantially match a predetermined thickness value and wherein an absolute value of a thermal coefficient of gain due to the minority carrier diffusion length property of the bulk semiconductor material is configured to substantially match an absolute value of a thermal coefficient of gain due to the thickness of the dead layer.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 3, 2011
    Inventors: Wen Li, Jonathan D. Short, George E. Possin
  • Patent number: 7613274
    Abstract: A diagnostic imaging system includes an x-ray source that emits a beam of x-ray energy toward an object to be imaged and an energy discriminating (ED) detector that receives the x-ray energy emitted by the x-ray energy source. The ED detector includes a first layer having a first thickness, wherein the first layer comprises a semiconductor configurable to operate in at least an integrating mode and a second layer having a second thickness greater than the first thickness, and configured to receive x-rays that pass through the first layer. The system further includes a data acquisition system (DAS) operably connected to the ED detector and a computer that is operably connected to the DAS. The computer is programmed to identify saturated data in the second layer and substitute the saturated data with non-saturated data from a corresponding pixel in the first layer.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 3, 2009
    Assignee: General Electric Company
    Inventors: John Eric Tkaczyk, Jonathan D. Short, Yanfeng Du, Wen Li, Xiaoye Wu
  • Patent number: 7606347
    Abstract: A CT detector includes a first detector configured to convert radiographic energy to electrical signals representative of energy sensitive radiographic data and a second detector configured to convert radiographic energy to electrical signals representative of energy sensitive radiographic data and positioned to receive x-rays that pass through the first detector. A logic controller is electrically connected to the first detector and the second detector and is configured to receive a logic output signal from the second detector indicative of an amount of a saturation level of the first detector, compare the logic output signal to a threshold value, and output, based on the comparison, electrical signals from the first detector, the second detector, or a combination thereof to an image chain.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: October 20, 2009
    Assignee: General Electric Company
    Inventors: John Eric Tkaczyk, Jonathan D. Short, James Wilson Rose, Xiaoye Wu, Samit Kumar Basu
  • Patent number: 7606346
    Abstract: A detector module for a CT imaging system is provided. The detector module includes a sensor element to convert x-rays to electrical signals. The sensor element is coupled to a data acquisition system (DAS) via an interconnect system, the DAS comprised of an electronic substrate and an integrated circuit. The interconnect system couples the sensor element, electronic substrate, and integrated circuit by way of a contact pad interconnect together with a wire bond interconnect or an additional contact pad interconnect.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: October 20, 2009
    Assignee: General Electric Company
    Inventors: John Eric Tkaczyk, Jonathan D. Short, Yanfeng Du, James Wilson Rose, Charles G. Woychik
  • Publication number: 20090129538
    Abstract: A diagnostic imaging system includes an x-ray source that emits a beam of x-ray energy toward an object to be imaged and an energy discriminating (ED) detector that receives the x-ray energy emitted by the x-ray energy source. The ED detector includes a first layer having a first thickness, wherein the first layer comprises a semiconductor configurable to operate in at least an integrating mode and a second layer having a second thickness greater than the first thickness, and configured to receive x-rays that pass through the first layer. The system further includes a data acquisition system (DAS) operably connected to the ED detector and a computer that is operably connected to the DAS. The computer is programmed to identify saturated data in the second layer and substitute the saturated data with non-saturated data from a corresponding pixel in the first layer.
    Type: Application
    Filed: November 16, 2007
    Publication date: May 21, 2009
    Inventors: John Eric Tkaczyk, Jonathan D. Short, Yanfeng Du, Wen Li, Xiaoye Wu
  • Patent number: 7512210
    Abstract: An imaging system includes a gantry having a bore therethrough designed to receive a patient being translated through the bore an x-ray source disposed in the gantry and configured to emit x-rays toward the patient, and a detector module disposed in the gantry to receive x-rays attenuated by the patient. The detector module includes a scintillator configured to absorb the x-rays and to convert the x-rays into optical photons, a device configured to receive the optical photons and to convert the optical photons to electrical signals, and an adaptive data acquisition system (DAS) configured to switch an operating mode of the device from a charge integrating mode to a photon counting mode, and vice versa.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: March 31, 2009
    Assignee: General Electric Company
    Inventors: George E. Possin, Kent C. Burr, Aaron J. Couture, Jonathan D. Short
  • Publication number: 20090080601
    Abstract: A CT detector includes a direct conversion material configured to generate electrical charge upon reception of x-rays, a plurality of metallized anodes configured to collect electrical charges generated in the direct conversion material, at least one readout device, and a redistribution layer having a plurality of electrical pathways configured to route the electrical charges from the plurality of metallized anodes to the at least one readout device. A plurality of switches is coupled to the plurality of electrical pathways between the plurality of metallized anodes and the at least one readout device, wherein each of the plurality of switches includes an input line electrically coupled to one of the plurality of metallized anodes, a first output node electrically coupled to the at least one readout device, and a second output node electrically coupled to at least one other switch of the plurality of switches.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 26, 2009
    Inventors: John Eric Tkaczyk, James Wilson Rose, Wen Li, Jonathan D. Short, Yanfeng Du
  • Publication number: 20080240341
    Abstract: An imaging system includes a gantry having a bore therethrough designed to receive a patient being translated through the bore an x-ray source disposed in the gantry and configured to emit x-rays toward the patient, and a detector module disposed in the gantry to receive x-rays attenuated by the patient. The detector module includes a scintillator configured to absorb the x-rays and to convert the x-rays into optical photons, a device configured to receive the optical photons and to convert the optical photons to electrical signals, and an adaptive data acquisition system (DAS) configured to switch an operating mode of the device from a charge integrating mode to a photon counting mode, and vice versa.
    Type: Application
    Filed: March 27, 2007
    Publication date: October 2, 2008
    Inventors: George E. Possin, Kent Charles Burr, Aaron Judy Couture, Jonathan D. Short
  • Patent number: 7403589
    Abstract: A detector module for a CT imaging system includes a scintillator to convert x-rays to optical photons. The scintillator is optically coupled to a solid-state photomultiplier with internal gain to receive the optical photons and convert them into a corresponding electrical signal output.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: July 22, 2008
    Assignee: General Electric Company
    Inventors: Jonathan D. Short, George E. Possin, James W. LeBlanc, Rogerio G. Rodrigues, Kent C. Burr, Aaron J. Couture, Wen Li
  • Patent number: 7403590
    Abstract: A CT detector includes a pixel having a single photodiode and multiple charge storage devices that are alternately stored and read out. The photodiode is a frontlit diode with a pair of capacitors that alternately store charge generated during data acquisition. Multiple pixels are connected to a single readout amplifier. Charge is continuously acquired from each photodiode and stored on the charge storage devices, but such readout is from a single charge storage device at a time. As such, each charge storage device is read out independently, but the charge storage devices are connected to a common readout channel or port.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: July 22, 2008
    Assignee: General Electric Company
    Inventors: George E. Possin, Jonathan D. Short, Wen Li
  • Publication number: 20080165922
    Abstract: A CT collimator includes a first radiation absorbent lamination having a plurality of apertures formed therethrough. Each aperture formed through the first radiation absorbent lamination is aligned with a respective axis formed between a corresponding pixellating element and an x-ray emission source. The collimator includes a second radiation absorbent lamination having a plurality of apertures formed therethrough, each aperture formed through the second radiation absorbent lamination aligned with the respective axis formed between a corresponding pixellating element and the x-ray emission source. A spacer is positioned between the first and second radiation absorbent laminations.
    Type: Application
    Filed: January 9, 2007
    Publication date: July 10, 2008
    Inventors: Brian David Yanoff, Jonathan D. Short, Richard A. Thompson, Bruce Campbell Amm
  • Publication number: 20080165921
    Abstract: A detector module for a CT imaging system is provided. The detector module includes a sensor element to convert x-rays to electrical signals. The sensor element is coupled to a data acquisition system (DAS) via an interconnect system, the DAS comprised of an electronic substrate and an integrated circuit. The interconnect system couples the sensor element, electronic substrate, and integrated circuit by way of a contact pad interconnect together with a wire bond interconnect or an additional contact pad interconnect.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 10, 2008
    Inventors: John Eric Tkaczyk, Jonathan D. Short, Yanfeng Du, James wilson Rose, Charles G. Woychik
  • Patent number: 7283609
    Abstract: A CT detector includes a pixel having a single photodiode and multiple charge storage devices that are alternately stored and read out. The photodiode is a frontlit diode with a pair of capacitors that alternately store charge generated during data acquisition. Multiple pixels are connected to a single readout amplifier. Charge is continuously acquired from each photodiode and stored on the charge storage devices, but such readout is from a single charge storage device at a time. As such, each charge storage device is read out independently, but the charge storage devices are connected to a common readout channel or port.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: October 16, 2007
    Assignee: General Electric Company
    Inventors: George E. Possin, Jonathan D. Short, Wen Li