Patents by Inventor Jonathan ETHIER

Jonathan ETHIER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11161996
    Abstract: The present invention relates to an electronic device comprising a printed substrate comprising a trace of molecular ink thereon, the molecular ink being sintered to form a conductive metal trace forming the electronic device, wherein the molecular ink is chosen from a) a flake-less printable composition of 30-60 wt % of a C8-C12 silver carboxylate, 0.1-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition; or b) a flake-less printable composition of 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate, 0.25-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 2, 2021
    Assignees: E2IP TECHNOLOGIES INC., NATIONAL RESEARCH COUNCIL OF CANADA, HER MAJESTY THE QUEEN IN RIGHT OF CANADA (...)
    Inventors: Xiangyang Liu, Olga Mozenson, Bhavana Deore, Chantal Paquet, Arnold Kell, Patrick Malenfant, Julie Ferrigno, Olivier Ferrand, Jian Xiong Hu, Sylvie Lafreniere, Reza Chaharmir, Jonathan Ethier, Khelifa Hettak, Jafar Shaker, Adrian Momciu
  • Patent number: 10797108
    Abstract: An electronic component such as a voltage controllable reconfigurable capacitor or transistor is formed by printing one or more layers of ink on a non-conductive substrate. Ferroelectric ink or semi-conductive ink is printed and conductive resistive or dielectric ink is printed on a s same or different layers. Reconfigurability is achieved by printing resistive biasing circuitry wherein when a changing voltage is applied to the biasing circuitry, an electronic property of the electronic component changes in response to the changing voltage.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: October 6, 2020
    Assignee: Her Majesty the Queen in the Right of Canada, as represented by the Minister of Industry, through the Communication Research Centre Canada
    Inventors: Khelifa Hettak, Jafar Shaker, Aldo Petosa, Jonathan Ethier, Reza Chaharmir, Ming Li, Nicolas Gagnon
  • Publication number: 20190284422
    Abstract: The present invention relates to an electronic device comprising a printed substrate comprising a trace of molecular ink thereon, the molecular ink being sintered to form a conductive metal trace forming the electronic device, wherein the molecular ink is chosen from a) a flake-less printable composition of 30-60 wt % of a C8-C12 silver carboxylate, 0.1-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition; or b) a flake-less printable composition of 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate, 0.25-10 wt % of a polymeric binder and balance of at least one organic solvent, all weights based on total weight of the composition.
    Type: Application
    Filed: October 25, 2017
    Publication date: September 19, 2019
    Applicants: GGI INTERNATIONAL, NATIONAL RESEARCH COUNCIL OF CANADA, HER MAJESTY THE QUEEN IN RIGHT OF CANADA (...)
    Inventors: Xiangyang LIU, Olga MOZENSON, Bhavana DEORE, Chantal PAQUET, Arnold KELL, Patrick MALENFANT, Julie FERRIGNO, Olivier FERRAND, Jian Xiong HU, Sylvie LAFRENIERE, Reza CHAHARMIR, Jonathan ETHIER, Khelifa HETTAK, Jafar SHAKER, Adrian MOMCIU
  • Publication number: 20190074325
    Abstract: An electronic component such as a voltage controllable reconfigurable capacitor or transistor is formed by printing one or more layers of ink on a non-conductive substrate. Ferroelectric ink or semi-conductive ink is printed and conductive resistive or dielectric ink is printed on a s same or different layers. Reconfigurability is achieved by printing resistive biasing circuitry wherein when a changing voltage is applied to the biasing circuitry, an electronic property of the electronic component changes in response to the changing voltage.
    Type: Application
    Filed: April 26, 2018
    Publication date: March 7, 2019
    Inventors: Khelifa HETTAK, Jafar SHAKER, Aldo PETOSA, Jonathan ETHIER, Reza CHAHARMIR, Ming LI, Nicolas GAGNON