Patents by Inventor Jonathan Glassman

Jonathan Glassman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240366659
    Abstract: Activated carbon compounds for the detoxification of intoxications, including methods of use thereof are provided. Many embodiments provide an approach to detoxifying individuals, including household pets (e.g., dogs and/or cats) from toxic substances. Many embodiments are directed to compositions including activated carbon compounds that can be used to detoxify toxins and other intoxications in an individual. Many embodiments may use activated carbon spheres for detoxification. Many embodiments of compositions can be administered orally. In numerous embodiments, the individual is a human and/or a non-human animal, such as a household pet, including dogs and/or cats.
    Type: Application
    Filed: May 6, 2024
    Publication date: November 7, 2024
    Applicant: AllPet Inc. DBA Dr. Cuddles
    Inventors: Mathieu Glassman, Jonathan Daniel Foster
  • Publication number: 20100082082
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: April 7, 2009
    Publication date: April 1, 2010
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Patent number: 7594313
    Abstract: A method of manufacturing a microwave antenna assembly includes the step of providing a proximal portion having an inner conductor and an outer conductor. Each of the inner and outer conductors extend through the proximal portion and the inner conductor is disposed within the outer conductor. The method also includes the step of placing a junction member adjacent to a distal end of the proximal portion such that the inner conductor extends through a channel defined in the junction member. The method also includes the step of placing a proximal end of a distal portion adjacent to a distal end of the junction member such that the inner conductor extends within a channel defined within the distal portion. The method also includes the step of affixing the inner conductor to the distal portion such that the proximal portion and the distal portion apply a compressive force on the junction member.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: September 29, 2009
    Assignee: Vivant Medical, Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Patent number: 7527623
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: May 5, 2009
    Assignee: Vivant Medical, Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Patent number: 7318824
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: January 15, 2008
    Assignee: Vivant Medical, Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Publication number: 20070037034
    Abstract: A fluid pump and connector assembly is particularly suited for use in connecting a fuel cartridge to a fuel cell system. The assembly has a first sub-assembly comprising a fluid inlet, a fluid outlet, a flexible diaphragm in fluid communication with the inlet and outlet, and a first connector. The assembly also has a second sub-assembly comprising a second connector adapted to connect to the first connector, an actuator and a reciprocating member coupled to the actuator and contacting the diaphragm when the first and second sub-assemblies are connected, wherein a reciprocating motion of the actuator and member causes the diaphragm to reciprocate and pump fluid from the inlet to the outlet without exposing the fluid to the second sub-assembly.
    Type: Application
    Filed: August 11, 2005
    Publication date: February 15, 2007
    Applicant: Ardica Technologies
    Inventors: Tobin Fisher, Jonathan Glassman
  • Publication number: 20060293650
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: July 26, 2006
    Publication date: December 28, 2006
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Patent number: 7147632
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: December 12, 2006
    Assignee: Vivant Medical Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Publication number: 20060264923
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: July 26, 2006
    Publication date: November 23, 2006
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Publication number: 20050255349
    Abstract: An article of clothing with an on-demand power supply for electrical devices is provided. The power supply includes stiff planar fuel cell devices that are distributed in a plane. The number of fuel cells is dependent on the power requirements for the electrical devices. The planar stiff fuel cells are flexibly interconnected in the plane by a flexible interconnecting means, which allows the fuel cells to move with respect to each other out of the plane. This further allows the power supply to be nicely integrated in an article of clothing and minimizes negative impact to a body region or to the article of clothing. The electrical and fuel connections between the fuel cells are integrated with the flexible interconnecting means. To further integrate and increase ease of operation a control system is included to control the on-demand power supply or control power levels for the electrical device.
    Type: Application
    Filed: May 6, 2005
    Publication date: November 17, 2005
    Inventors: Tobin Fisher, Thomas Covington, Jonathan Glassman, Jesse Thomas, Daniel Braithwaite
  • Publication number: 20050256555
    Abstract: Electrochemical devices are utilized as an on-demand personal temperature control system, as well as an on-demand power supply for electrical devices. The electrochemical devices are planar stiff fuel cells flexibly interconnected in a plane by a flexible interconnecting means. This allows the fuel cells to move with respect to each other out of the plane. This further allows it to be nicely integrated in an article of clothing, to minimize negative impact to a body region or to the article of clothing, and to maximize the heat conduction area to a body region. To further integrate and increase ease of operation a control system and sensors could be included to control: (i) on-demand power and/or heat supply, (ii) temperature levels, and/or (iii) power levels for the electrical device(s).
    Type: Application
    Filed: May 6, 2005
    Publication date: November 17, 2005
    Inventors: Tobin Fisher, Thomas Covington, Jonathan Glassman, Jesse Thomas, Daniel Braithwaite
  • Publication number: 20050085881
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: October 7, 2004
    Publication date: April 21, 2005
    Applicant: Vivant Medical, Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Patent number: 6878147
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: April 12, 2005
    Assignee: Vivant Medical, Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Publication number: 20050062666
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: October 7, 2004
    Publication date: March 24, 2005
    Applicant: Vivant Medical, Inc.
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Publication number: 20030088242
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 8, 2003
    Inventors: Mani Prakash, Francesca Rossetto, Anthony Lee, Steven Kim, Ted Su, Jonathan Glassman
  • Patent number: D1045089
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: October 1, 2024
    Assignee: Verily Life Sciences LLC
    Inventors: Jeremy Emken, Christopher Ioffreda, Eric Li, Jonathan Grossman, Ethan Glassman, Eric Bennett