Patents by Inventor Jonathan Greenspan

Jonathan Greenspan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8824628
    Abstract: Tomosynthesis data may be acquired from an ionizing radiation source that substantially continuously emits radiation while its position is varied relative to a photon counting detector. The detector detects photons comprised within the radiation and photon data indicative of the detected photons is generated. The photon data may comprise data related to a detected photon's detection time, detection location on the detector, energy level, and/or trajectory from the radiation source, for example. The photon data of various photons may be compiled into a plurality of bins and, through reconstruction and tomosynthesis techniques, produce synthesized images of various tomography planes of an object under examination. In this way, the tomosynthesis techniques rely on counting photons rather than measuring their energy to create synthesized images.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: September 2, 2014
    Assignee: Analogic Corporation
    Inventors: Enrico Dolazza, Sorin Marcovici, Wei Zhao, Jonathan Greenspan, Luc Laperriere, Olivier Tousignant
  • Publication number: 20130294573
    Abstract: Tomosynthesis data may be acquired from an ionizing radiation source that substantially continuously emits radiation while its position is varied relative to a photon counting detector. The detector detects photons comprised within the radiation and photon data indicative of the detected photons is generated. The photon data may comprise data related to a detected photon's detection time, detection location on the detector, energy level, and/or trajectory from the radiation source, for example. The photon data of various photons may be compiled into a plurality of bins and, through reconstruction and tomosynthesis techniques, produce synthesized images of various tomography planes of an object under examination. In this way, the tomosynthesis techniques rely on counting photons rather than measuring their energy to create synthesized images.
    Type: Application
    Filed: July 2, 2013
    Publication date: November 7, 2013
    Inventors: Enrico Dolazza, Sorin Marcovici, Wei Zhao, Jonathan Greenspan, Luc Laperriere, Olivier Tousignant
  • Patent number: 8477901
    Abstract: Tomosynthesis data may be acquired from a radiation source that substantially continuously emits radiation while its position is varied relative to a photon counting x-ray detector. The detector detects photons comprised within the radiation and photon data indicative of the detected photons is generated. The photon data may comprise data related to a detected photon's detection time, detection location on the detector, energy level, and/or trajectory from the radiation source, for example. The photon data of various photons may be compiled into a plurality of bins and, through reconstruction and tomosynthesis techniques, produce synthesized images of various tomography planes of an object under examination. In this way, the tomosynthesis techniques rely on counting photons rather than measuring their energy to create synthesized images.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: July 2, 2013
    Assignee: Analogic Corporation
    Inventors: Enrico Dolazza, Sorin Marcovici, Wei Zhao, Jonathan Greenspan, Luc Laperriere, Olivier Tousignant
  • Publication number: 20110235774
    Abstract: Tomosynthesis data may be acquired from a radiation source that substantially continuously emits radiation while its position is varied relative to a photon counting x-ray detector. The detector detects photons comprised within the radiation and photon data indicative of the detected photons is generated. The photon data may comprise data related to a detected photon's detection time, detection location on the detector, energy level, and/or trajectory from the radiation source, for example. The photon data of various photons may be compiled into a plurality of bins and, through reconstruction and tomosynthesis techniques, produce synthesized images of various tomography planes of an object under examination. In this way, the tomosynthesis techniques rely on counting photons rather than measuring their energy to create synthesized images.
    Type: Application
    Filed: November 26, 2008
    Publication date: September 29, 2011
    Inventors: Enrico Dolazza, Sorin Marcovici, Wei Zhao, Jonathan Greenspan, Luc Laperriere, Olivier Tousignant
  • Patent number: 7060516
    Abstract: A method for integrating optical devices in a single growth step by utilizing a combination of Selective Area Growth and Etch (SAGE) is provided. An first device is formed between a set of oxide-masked regions, whilst a second device is formed in an adjacent planar region. By use of Selected Area Growth and Etch (SAGE), in which the growth between the oxide-masked regions is greater than the growth in the planar region, and in which the etch rate in the area between the oxide-masked regions is substantially the same as that in the planar region, the number of active quantum layers for the first device are formed between the oxide-masked regions, and a different number of layers for the second device is formed in the planar region.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: June 13, 2006
    Assignee: Bookham Technology, PLC
    Inventors: Rick W. Glew, Ian B. Betty, Jonathan Greenspan
  • Publication number: 20040147053
    Abstract: A method for integrating optical devices in a single growth step by utilizing a combination of Selective Area Growth and Etch (SAGE) is provided. An first device is formed between a set of oxide-masked regions, whilst a second device is formed in an adjacent planar region. By use of Selected Area Growth and Etch (SAGE), in which the growth between the oxide-masked regions is greater than the growth in the planar region, and in which the etch rate in the area between the oxide-masked regions is substantially the same as that in the planar region, the number of active quantum layers for the first device are formed between the oxide-masked regions, and a different number of layers for the second device is formed in the planar region.
    Type: Application
    Filed: September 30, 2003
    Publication date: July 29, 2004
    Applicant: BOOKHAM TECHNOLOGY, PLC
    Inventors: Richard William Glew, Ian B. Betty, Jonathan Greenspan