Patents by Inventor Jonathan Harman

Jonathan Harman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230006237
    Abstract: A stack of rectangular, planar electrochemical cell units (200), each cell unit (200) comprising at least one first fluid mid-port (230, 235) that is disposed midway along its length within or between one or more active cell chemistry regions (210) and is in fluid communication with a first fluid volume of the cell unit (200). The first fluid mid-ports (230, 235) of the respective cell units (200) align to form at least one first fluid mid-passageway extending in the stack direction. The stack is configured such that, in each first fluid volume, first fluid flow paths (405, 410) extend across the one or more active cell chemistry regions (210) between the at least one first fluid mid-port (230, 235) and each respective opposed cell end.
    Type: Application
    Filed: November 26, 2020
    Publication date: January 5, 2023
    Inventors: Christopher James Nobbs, Ameir Alexander Mahgoub, Jonathan Harman, Tomasz Domanski
  • Patent number: 10169882
    Abstract: Roughly described, a method for estimating a size measurement of a subject feature on a body, for use with a photo, snapped by a camera which may be handheld. A reference marker is placed on the body near the subject feature. The reference marker includes concentric rings to help confirm its identify, and registration markings to determine the pose at which the photo was taken. The registration markings can be dots at vertices of a square. The method can include detecting concentric ellipses in the photo corresponding to the concentric circles, detecting the registration markings in the photo within a predetermined region which is outside the detected ellipses, geometrically transforming at least the subject feature in the photo based on the detected locations of the registration markings, calculating the scale of the photo based on the detected registration markings, and providing the transformed image and scale for the size measurement.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: January 1, 2019
    Assignee: WinguMD, Inc.
    Inventors: Manabu Tokunaga, Jonathan Harman
  • Patent number: 7020232
    Abstract: A scanning electron beam computed tomographic system eliminates axial offset between target and detector by disposing the target, collimator, and detector such that active portions of the target and detector are always diametrically opposite each other. This result is achieved by providing a helical target, collimator, and detector, or by providing planar target, collimator, and detector components that are inclined relative to the vertical axis such that active portions of the target and detector are always diametrically opposite each other. Either configuration eliminates cone beam error and the necessity to correct for same. Further, the system can provide multi-slice scanning of an object that is in constant motion at a critical velocity, without having to interpolate data. Conventional helical scanning may still be undertaken. Detector elements can be disposed axially to improve signal/noise ratio and to produce a cone beam cancellation effect.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 28, 2006
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Roy E. Rand, Jonathan Harman, Douglas P. Boyd
  • Patent number: 6735271
    Abstract: A scanning electron beam computed tomographic system eliminates axial offset between target and detector by disposing the target, collimator, and detector such that active portions of the target and detector are always diametrically opposite each other. This result is achieved by providing a helical target, collimator, and detector, or by providing planar target, collimator, and detector components that are inclined relative to the vertical axis such that active portions of the target and detector are always diametrically opposite each other. Either configuration eliminates cone beam error and the necessity to correct for same. Further, the system can provide multi-slice scanning of an object that is in constant motion at a critical velocity, without having to interpolate data. Conventional helical scanning may still be undertaken. Detector elements can be disposed axially to improve signal/noise ratio and to produce a cone beam cancellation effect.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: May 11, 2004
    Assignee: GE Medical Systems Global Technology Company LLC
    Inventors: Roy E. Rand, Jonathan Harman, Douglas P. Boyd
  • Publication number: 20030161434
    Abstract: A scanning electron beam computed tomographic system eliminates axial offset between target and detector by disposing the target, collimator, and detector such that active portions of the target and detector are always diametrically opposite each other. This result is achieved by providing a helical target, collimator, and detector, or by providing planar target, collimator, and detector components that are inclined relative to the vertical axis such that active portions of the target and detector are always diametrically opposite each other. Either configuration eliminates cone beam error and the necessity to correct for same. Further, the system can provide multi-slice scanning of an object that is in constant motion at a critical velocity, without having to interpolate data. Conventional helical scanning may still be undertaken. Detector elements can be disposed axially to improve signal/noise ratio and to produce a cone beam cancellation effect.
    Type: Application
    Filed: February 21, 2003
    Publication date: August 28, 2003
    Inventors: Roy E. Rand, Jonathan Harman, Douglas P. Boyd