Patents by Inventor Jonathan Hoang Huynh

Jonathan Hoang Huynh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8537593
    Abstract: A circuit for supplying a high voltage to load is described. An example of such a circuit could be used in the peripheral circuitry of a non-volatile memory device for supplying a program voltage from a charge pump to a selected word line. The circuit includes a charge pump that generates the high voltage and decoding circuitry that is connected to receive this high voltage and selectively apply it to a load. The decoding circuitry receives the high voltage through a switch, where the switch is of a variable resistance that progressively passes the high voltage in response to a control signal. In a particular example, the switch includes a transistor connected between the charge pump and the decoding circuitry, where the control gate of the transistor is connected to the output of a second charge pump that is connected to receive the high voltage and a settable clock signal as its inputs.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 17, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Jonathan Hoang Huynh, Feng Pan, Khin Htoo
  • Publication number: 20120275225
    Abstract: A circuit for supplying a high voltage to load is described. An example of such a circuit could be used in the peripheral circuitry of a non-volatile memory device for supplying a program voltage from a charge pump to a selected word line. The circuit includes a charge pump that generates the high voltage and decoding circuitry that is connected to receive this high voltage and selectively apply it to a load. The decoding circuitry receives the high voltage through a switch, where the switch is of a variable resistance that progressively passes the high voltage in response to a control signal. In a particular example, the switch includes a transistor connected between the charge pump and the decoding circuitry, where the control gate of the transistor is connected to the output of a second charge pump that is connected to receive the high voltage and a settable clock signal as its inputs.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Inventors: Jonathan Hoang Huynh, Feng Pan, Khin Htoo
  • Publication number: 20120081172
    Abstract: A high voltage switch is presented that, rather than relying upon a charge pump to boost the voltage applied to the switches gate in order to compensate for the switch's threshold voltage, a combination of high voltage devices to eliminate the threshold voltage from the switch. This will save on the needed circuit area and reduce the current and, consequently, power consumption. In the exemplary embodiment, the switch circuit passes an input voltage from an input node to an output node in response to an enable signal. The switch includes a level shifter connected to the input node and is connected to receive the enable signal to provide the input voltage as output when the enable signal is asserted.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Inventors: Jonathan Hoang Huynh, Feng Pan
  • Patent number: 8106701
    Abstract: A level shifter circuit suitable for high voltage applications with shoot-through current isolation is presented. The level shifter receives a first enable signal and receives an input voltage at a first node and supplies an output voltage at a second node. The circuit provides the output voltage from the input voltage in response to the first enable signal being asserted and sets the output node to a low voltage value when the first enable signal is de-asserted. The level shifting circuit includes a depletion type NMOS transistor, having a gate connected to the output node, and a PMOS transistor, having a gate connected to the first enable signal. It also includes a first resistive element that is distinct from the NMOS and PMOS transistors. The NMOS transistor, the PMOS transistor and the first resistive elements are connected in series between the first and second nodes, with the NMOS transistor being connected to the first node.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 31, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Jonathan Hoang Huynh, Feng Pan, Qui Vi Nguyen, Trung Pham