Patents by Inventor Jonathan Hughes

Jonathan Hughes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170112531
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing. Systems and methods according to present principles allow for such steps to occur without significant loss of spring force, and without deleterious effects such as seal slingshotting.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Inventors: Ryan Everett Schoonmaker, Jennifer Blackwell, Christopher M. Davis, David DeRenzy, Eric Gobrecht, Jason Halac, Jonathan Hughes, Kathleen Suzanne Hurst, Randall Scott Koplin, Phong Lieu, Kyle Neuser, Todd Andrew Newhouse, Jack Pryor, Peter C. Simpson, Maria Noel Brown Wells, Justen Deering England, Stephanie Lynn Mah, Leonard Darius Barbod, Jillian K. Allen, Michael J. Estes, Philip Thomas Pupa, Timothy Joseph Goldsmith, Kyle Tinnell Keller
  • Publication number: 20170112532
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing. Systems and methods according to present principles allow for such steps to occur without significant loss of spring force, and without deleterious effects such as seal slingshotting.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Inventors: Ryan Everett Schoonmaker, Jennifer Blackwell, Christopher M. Davis, David DeRenzy, Eric Gobrecht, Jason Halac, Jonathan Hughes, Kathleen Suzanne Hurst, Randall Scott Koplin, Phong Lieu, Kyle Neuser, Todd Andrew Newhouse, Jack Pryor, Peter C. Simpson, Maria Noel Brown Wells, Justen Deering England, Stephanie Lynn Mah, Leonard Darius Barbod, Jillian K. Allen, Michael J. Estes, Philip Thomas Pupa, Timothy Joseph Goldsmith, Kyle Tinnell Keller
  • Publication number: 20170112534
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing. Systems and methods according to present principles allow for such steps to occur without significant loss of spring force, and without deleterious effects such as seal slingshotting.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Inventors: Ryan Everett Schoonmaker, Jennifer Blackwell, Christopher M. Davis, David DeRenzy, Eric Gobrecht, Jason Halac, Jonathan Hughes, Kathleen Suzanne Hurst, Randall Scott Koplin, Phong Lieu, Kyle Neuser, Todd Andrew Newhouse, Jack Pryor, Peter C. Simpson, Maria Noel Brown Wells, Justen Deering England, Stephanie Lynn Mah, Leonard Darius Barbod, Jillian K. Allen, Michael J. Estes, Philip Thomas Pupa, Timothy Joseph Goldsmith, Kyle Tinnell Keller
  • Publication number: 20170112533
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing. Systems and methods according to present principles allow for such steps to occur without significant loss of spring force, and without deleterious effects such as seal slingshotting.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Inventors: Ryan Everett Schoonmaker, Jennifer Blackwell, Christopher M. Davis, David DeRenzy, Eric Gobrecht, Jason Halac, Jonathan Hughes, Kathleen Suzanne Hurst, Randall Scott Koplin, Phong Lieu, Kyle Neuser, Todd Andrew Newhouse, Jack Pryor, Peter C. Simpson, Maria Noel Brown Wells, Justen Deering England, Stephanie Lynn Mah, Leonard Darius Barbod, Jillian K. Allen, Michael J. Estes, Philip Thomas Pupa, Timothy Joseph Goldsmith, Kyle Tinnell Keller
  • Patent number: 9549692
    Abstract: Devices and methods are described for providing continuous measurement of an analyte concentration. In some embodiments, the devices include a membrane that has an interference domain designed to reduce the permeation of one or more interferents.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: January 24, 2017
    Assignee: DexCom, Inc.
    Inventors: Jonathan Hughes, Robert J. Boock, Chris W. Dring
  • Publication number: 20160338734
    Abstract: The present disclosure relates to a needle including a wall structure, a cutting edge and a blunt contour. The needle advantageously can be used to deliver a sensor (such as a glucose or other analyte sensor) through an outer skin layer and into a sensor depth in a less invasive way than prior art needles. The size of the cutting edge is balanced against a portion of the distal wall structure that has blunt contours. Thus, the needle is capable of cutting the more durable outer skin layer (first phase) and then progressively stretching open the cut for further advancement into the subcutaneous layer (second phase). When the needle is sufficiently advanced, it is retracted leaving the sensor in a desired position. Early testing has shown a reduction of “dip and recover” from glucose sensors delivered using the needle.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Neel Shah, Jennifer Blackwell, Jonathan Hughes, Ted Tang Lee, Peter C. Simpson, Shanger Wang
  • Publication number: 20160338733
    Abstract: The present disclosure relates to a needle including a wall structure, a cutting edge and a blunt contour. The needle advantageously can be used to deliver a sensor (such as a glucose or other analyte sensor) through an outer skin layer and into a sensor depth in a less invasive way than prior art needles. The size of the cutting edge is balanced against a portion of the distal wall structure that has blunt contours. Thus, the needle is capable of cutting the more durable outer skin layer (first phase) and then progressively stretching open the cut for further advancement into the subcutaneous layer (second phase). When the needle is sufficiently advanced, it is retracted leaving the sensor in a desired position. Early testing has shown a reduction of “dip and recover” from glucose sensors delivered using the needle.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Neel Shah, Jennifer Blackwell, Jonathan Hughes, Ted Tang Lee, Peter C. Simpson, Shanger Wang
  • Publication number: 20160338628
    Abstract: The present disclosure relates to a needle including a wall structure, a cutting edge and a blunt contour. The needle advantageously can be used to deliver a sensor (such as a glucose or other analyte sensor) through an outer skin layer and into a sensor depth in a less invasive way than prior art needles. The size of the cutting edge is balanced against a portion of the distal wall structure that has blunt contours. Thus, the needle is capable of cutting the more durable outer skin layer (first phase) and then progressively stretching open the cut for further advancement into the subcutaneous layer (second phase). When the needle is sufficiently advanced, it is retracted leaving the sensor in a desired position. Early testing has shown a reduction of “dip and recover” from glucose sensors delivered using the needle.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Neel Shah, Jennifer Blackwell, Jonathan Hughes, Ted Tang Lee, Peter C. Simpson, Shanger Wang
  • Publication number: 20160198988
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: March 3, 2016
    Publication date: July 14, 2016
    Applicant: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Jonathan Hughes, Lauren Hruby Jepson, Apurv Ulas Kamath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20160113557
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 28, 2016
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Lauren Hruby Jepson, Jonathan Hughes, Apurv Ullas Kamath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20160113558
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 28, 2016
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Lauren Hruby Jepson, Jonathan Hughes, Apurv Ullas Karnath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20160106350
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 21, 2016
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Lauren Hruby Jepson, Jonathan Hughes, Apurv Ullas Kamath, Anna Leigh Rack-Gomer, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20160081597
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 24, 2016
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Jonathan Hughes, Lauren Hruby Jepson, Apurv Ullas Kamath, Anna Leigh Rack-Gomer, Peter c. Simpson, Stephen J. Vanslyke
  • Publication number: 20160058380
    Abstract: Adhesive pad systems that provide longer lasting adherence of the mounting unit to the host's skin are provided. Some systems include a reinforcing overlay that at least partially covers the adhesive pad. The reinforcing overlay may be removable without disturbing the sensor so that the overlay may be replaceable.
    Type: Application
    Filed: August 25, 2015
    Publication date: March 3, 2016
    Inventors: James Jinwoo Lee, Leif N. Bowman, Tim Ray Gackstetter, Jonathan Hughes, Jeff Jackson, Ted Tang Lee, Phong Lieu, Andrew Attila Pal, James R. Petisce, Jack Pryor, Roger Schneider, Peter C. Simpson, George Vigil, Matthew D. Wightlin
  • Publication number: 20150366494
    Abstract: Devices are presented for measurement of an analyte concentration. The devices comprise: a sensor configured to generate a signal indicative of a concentration of an analyte; and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme domain comprising an enzyme, a base polymer, and a hydrophilic polymer which makes up from about 5 wt. % to about 30 wt. % of the enzyme domain.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: Jonathan Hughes, Robert J. Boock, Chris W. Dring, Huashi Zhang, Mark Wu, David Sze
  • Patent number: 9101776
    Abstract: An implantable lead connector assembly includes contact rings, and a bulk of insulation, which includes sealing surfaces and a shank defining a distal end of the bulk. One or more conductor pins extend within the bulk and have distal ends protruding distally therefrom to be exposed alongside the shank; and an inner surface of each contact ring may have a proximal end of a corresponding conductor pin coupled thereto. The sealing surfaces, in conjunction with outer contact surfaces of the contact rings, which are interspersed therebetween, define a uniform outer diameter for the connector assembly. The bulk of insulation may be formed in two parts, wherein a primary bulk is formed around a core and includes circuit-support and shank segments. A secondary bulk, which includes the aforementioned sealing surfaces, is injection molded around the primary bulk, after positioning the contact rings and corresponding conductor pins on the circuit-support segment thereof.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: August 11, 2015
    Assignee: Medtronic, Inc.
    Inventor: Jonathan A Hughes
  • Patent number: 9100536
    Abstract: A display is disclosed that comprises an array of display pixels, in which light sensing pixels are interspersed with the display pixels substantially across the area of the display. At least one color display sub-pixel is arranged to be switched off when the corresponding color light sensor pixel closest to that display sub-pixel is detecting light to generate an image. A portable electronic device is disclosed which comprises the display. The display is then operable to capture an image from the light sensing pixels, so that for example it can then operate as one or more of a digital mirror, scanner, biometric lock or touch panel. When a user looks at the display for a video call, the captured image of the user appears to look directly the other party.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: August 4, 2015
    Assignee: Sony Computer Entertainment Europe Limited
    Inventor: Colin Jonathan Hughes
  • Publication number: 20150195541
    Abstract: A method of texture encoding is provided. The method includes obtaining a plurality of textures, assembling a sequence of textures by selecting a first texture of the sequence of textures and then, one or more times, adding to the sequence of textures a texture from the plurality of textures that is calculated to be the one most similar to the current last texture in the sequence of textures. The method then encodes the assembled sequence of textures using a motion vector based video encoding scheme. Meanwhile, a method of texture decoding includes receiving a data file encoded using a motion vector based video encoding scheme, decoding the data file using a corresponding motion vector based video decoding scheme, and obtaining from the decoding scheme a sequence of textures arranged in an order of mutual similarity.
    Type: Application
    Filed: January 5, 2015
    Publication date: July 9, 2015
    Inventor: Colin Jonathan Hughes
  • Patent number: 9072909
    Abstract: An implantable lead connector assembly includes core and contact circuits held together and isolated from one another by insulation. The core circuit includes a conductive core and a conductor pin, which has a proximal end coupled to an outer surface of the core, and a distal end spaced outward from the outer surface and protruding distally from the insulation. Insulation sealing surfaces extend on either side of an outer contact surface of each contact circuit, and the sealing and contact surfaces define a uniform outer diameter of the assembly. A conductor pin of each contact circuit has a proximal end coupled to an inner surface of a contact ring of the corresponding circuit, and a distal end that protrudes distally from the insulation. The insulation may be formed by injection molding, and then outer surfaces of the molded insulation and contact ring(s) are ground down to the uniform outer diameter.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 7, 2015
    Assignee: Medtronic, Inc.
    Inventor: Jonathan A Hughes
  • Publication number: 20150165216
    Abstract: An implantable lead connector assembly includes core and contact circuits held together and isolated from one another by insulation. The core circuit includes a conductive core and a conductor pin, which has a proximal end coupled to an outer surface of the core, and a distal end spaced outward from the outer surface and protruding distally from the insulation. Insulation sealing surfaces extend on either side of an outer contact surface of each contact circuit, and the sealing and contact surfaces define a uniform outer diameter of the assembly. A conductor pin of each contact circuit has a proximal end coupled to an inner surface of a contact ring of the corresponding circuit, and a distal end that protrudes distally from the insulation. The insulation may be formed by injection molding, and then outer surfaces of the molded insulation and contact ring(s) are ground down to the uniform outer diameter.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Inventor: Jonathan A. Hughes