Patents by Inventor Jonathan K. George

Jonathan K. George has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11719995
    Abstract: A digital-to-analog converter has a first interface coupled to a second interface through one or more modulation circuits. The circuits include a first coupler connected to the first interface; a first waveguide with a first lead connected to the first coupler, a first end, and a first length running therebetween. The first lead and the first end are coupled by a first switch. The circuits also include: a second coupler connected to the first interface; a second waveguide having a second lead connected to the second coupler, a second end, and a second length running therebetween, the second lead and the second end coupled by a second switch along the second length; and an optical combiner connected to the ends of the waveguides. The second interface is connected to the optical combiner of the modulation circuits. Output from the second interface is an optical signal capable of carrying binary information.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: August 8, 2023
    Assignee: The George Washington University
    Inventors: Jonathan K. George, Volker J. Sorger
  • Patent number: 11599776
    Abstract: The ability to rapidly identify symmetry and anti-symmetry is an essential attribute of intelligence. Symmetry perception is a central process in human vision and may be key to human 3D visualization. While previous work in understanding neuron symmetry perception has concentrated on the neuron as an integrator, the invention provides the coincidence detecting property of the spiking neuron can be used to reveal symmetry density in spatial data. A synchronized symmetry-identifying spiking artificial neural network enables layering and feedback in the network. The network of the invention can identify symmetry density between sets of data and present a digital logic implementation demonstrating an 8×8 leaky-integrate-and-fire symmetry detector in a field-programmable gate array. The efficiency of spiking neural networks can be harnessed to rapidly identify symmetry in spatial data with applications in image processing, 3D computer vision, and robotics.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: March 7, 2023
    Assignee: The George Washington University
    Inventors: Jonathan K. George, Volker J. Sorger
  • Publication number: 20220091475
    Abstract: A digital-to-analog converter has a first interface coupled to a second interface through one or more modulation circuits. The circuits include a first coupler connected to the first interface; a first waveguide with a first lead connected to the first coupler, a first end, and a first length running therebetween. The first lead and the first end are coupled by a first switch. The circuits also include: a second coupler connected to the first interface; a second waveguide having a second lead connected to the second coupler, a second end, and a second length running therebetween, the second lead and the second end coupled by a second switch along the second length; and an optical combiner connected to the ends of the waveguides. The second interface is connected to the optical combiner of the modulation circuits. Output from the second interface is an optical signal capable of carrying binary information.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Jonathan K. GEORGE, Volker J. Sorger
  • Patent number: 11221541
    Abstract: A digital-to-analog converter has a first interface coupled to a second interface through one or more modulation circuits. The circuits include a first coupler connected to the first interface; a first waveguide with a first lead connected to the first coupler, a first end, and a first length running therebetween. The first lead and the first end are coupled by a first switch. The circuits also include: a second coupler connected to the first interface; a second waveguide having a second lead connected to the second coupler, a second end, and a second length running therebetween, the second lead and the second end coupled by a second switch along the second length; and an optical combiner connected to the ends of the waveguides. The second interface is connected to the optical combiner of the modulation circuits. Output from the second interface is an optical signal capable of carrying binary information.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: January 11, 2022
    Assignee: The George Washington University
    Inventors: Jonathan K. George, Volker J. Sorger
  • Publication number: 20190377237
    Abstract: A digital-to-analog converter has a first interface coupled to a second interface through one or more modulation circuits. The circuits include a first coupler connected to the first interface; a first waveguide with a first lead connected to the first coupler, a first end, and a first length running therebetween. The first lead and the first end are coupled by a first switch. The circuits also include: a second coupler connected to the first interface; a second waveguide having a second lead connected to the second coupler, a second end, and a second length running therebetween, the second lead and the second end coupled by a second switch along the second length; and an optical combiner connected to the ends of the waveguides. The second interface is connected to the optical combiner of the modulation circuits. Output from the second interface is an optical signal capable of carrying binary information.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 12, 2019
    Inventors: Jonathan K. GEORGE, Volker J. Sorger
  • Publication number: 20190244079
    Abstract: The ability to rapidly identify symmetry and anti-symmetry is an essential attribute of intelligence. Symmetry perception is a central process in human vision and may be key to human 3D visualization. While previous work in understanding neuron symmetry perception has concentrated on the neuron as an integrator, the invention provides the coincidence detecting property of the spiking neuron can be used to reveal symmetry density in spatial data. A synchronized symmetry-identifying spiking artificial neural network enables layering and feedback in the network. The network of the invention can identify symmetry density between sets of data and present a digital logic implementation demonstrating an 8×8 leaky-integrate-and-fire symmetry detector in a field-programmable gate array. The efficiency of spiking neural networks can be harnessed to rapidly identify symmetry in spatial data with applications in image processing, 3D computer vision, and robotics.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 8, 2019
    Inventors: Jonathan K. George, Volker J. Sorger
  • Publication number: 20180008836
    Abstract: Provided herein are biocompatible scaffolds engineered to convey growth stimulatory light to cells and augment their growth on the scaffolds both in vitro and in vivo. Also provide are methods of modifying biocompatible transparent waveguides to control delivery of light from the waveguide material.
    Type: Application
    Filed: February 18, 2016
    Publication date: January 11, 2018
    Inventor: JONATHAN K. GEORGE
  • Patent number: 9297999
    Abstract: A synthetic focal plane imaging system senses electromagnetic radiation as a distribution of energy over time rather than as a distribution of energy over space. A spatial context independent of the energy detection is developed. The synthetic focal plane imaging system includes an aperture, a mask, an electromagnetic sensor, and a computer configured to receive sample energy data and shutter modeling data from the mask to generate hyperspectral images. The synthetic focal plane imaging system incorporates a spiral rotating mask to create theta-space rotational masking architectures resulting in simple cyclical linear equations that can be processed quickly and efficiently to generate the hyperspectral images. The system captures image content at multiple wavelengths, electronically processes the resulting data as an image cube with stacked layers of images. Each layer corresponds to a particular wavelength of the imaged object with the same physical locations arranged on top of each other to form the stack.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: March 29, 2016
    Inventor: Jonathan K. George
  • Publication number: 20130256518
    Abstract: A synthetic focal plane imaging system senses electromagnetic radiation as a distribution of energy over time rather than as a distribution of energy over space. A spatial context independent of the energy detection is developed. The synthetic focal plane imaging system includes an aperture, a mask, an electromagnetic sensor, and a computer configured to receive sample energy data and shutter modeling data from the mask to generate hyperspectral images. The synthetic focal plane imaging system incorporates a spiral rotating mask to create theta-space rotational masking architectures resulting in simple cyclical linear equations that can be processed quickly and efficiently to generate the hyperspectral images. The system captures image content at multiple wavelengths, electronically processes the resulting data as an image cube with stacked layers of images. Each layer corresponds to a particular wavelength of the imaged object with the same physical locations arranged on top of each other to form the stack.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 3, 2013
    Inventor: Jonathan K. George