Patents by Inventor Jonathan K. WITTER
Jonathan K. WITTER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12159727Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: GrantFiled: October 11, 2023Date of Patent: December 3, 2024Assignee: BWXT Advanced Technologies LLCInventors: Benjamin D. Fisher, John R. Salasin, Craig D. Gramlich, Jonathan K. Witter
-
Patent number: 12159726Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: GrantFiled: October 11, 2023Date of Patent: December 3, 2024Assignee: BWXT Advanced Technologies LLCInventors: Benjamin D. Fisher, John R. Salasin, Craig D. Gramlich, Jonathan K. Witter
-
Publication number: 20240266077Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: ApplicationFiled: November 1, 2023Publication date: August 8, 2024Applicant: BWXT Advanced Technologies LLCInventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
-
Publication number: 20240038406Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: ApplicationFiled: October 11, 2023Publication date: February 1, 2024Applicant: BWXT Advanced Technologies LLCInventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
-
Publication number: 20240038405Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: ApplicationFiled: October 11, 2023Publication date: February 1, 2024Applicant: BWXT Advanced Technologies LLCInventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
-
Publication number: 20240021327Abstract: A heat pipe fuel element includes an evaporation section, a condensing section, a capillary section connecting the evaporation section to the condensing section, and a primary coolant. In a cross-section in a plane perpendicular to a longitudinal axis of the evaporation section, the heat pipe fuel element includes a cladding layer enclosing an interior area including a fuel body formed of a fissionable fuel composition and that has an outer surface oriented toward the cladding layer and an inner surface defining a periphery of a vaporization space of the evaporation section. The fuel body has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS), and the evaporation sections of a plurality of heat pipe fuel elements are arranged in a phyllotaxis pattern (as seen in a cross-section in a plane perpendicular to a longitudinal axis of the active core region).Type: ApplicationFiled: July 11, 2023Publication date: January 18, 2024Applicant: BWXT Advanced Technologies LLCInventors: Benjamin D. FISHER, Craig D. GRAMLICH, Ross E. PIVOVAR, John R. SALASIN, Jonathan K. WITTER
-
Patent number: 11817225Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: GrantFiled: June 29, 2022Date of Patent: November 14, 2023Assignee: BWXT Advanced Technologies LLCInventors: Benjamin D. Fisher, John R. Salasin, Craig D. Gramlich, Jonathan K. Witter
-
Publication number: 20230326618Abstract: Carbide-based fuel assembly includes outer structural member of ceramic matrix composite material, the interior surface of which is lined in higher temperature regions with an insulation layer of porous refractory ceramic material. A continuous insulation layer extends the length of the fuel assembly or separate insulation layer sections have a thickness increasing step-wise along the length of the fuel assembly from upper (inlet) section towards bottom (outlet) section. Fuel element positioned inward of the insulation layer and between support meshes has a fuel composition including HALEU and the form of a plurality of individual elongated fuel bodies or one or more fuel monolith bodies containing coolant flow channels. Fuel assemblies are distributively arranged in a moderator block, with upper end of the outer structural member attached to an inlet for propellant and lower end of the outer structural member operatively interfaced with a nozzle forming a nuclear thermal propulsion reactor.Type: ApplicationFiled: June 1, 2023Publication date: October 12, 2023Applicants: BWXT Advanced Technologies LLC, BWXT Nuclear Energy, Inc.Inventors: Eric A. BARRINGER, Russell R. JENSEN, Jeremy L. GUSTAFSON, Matt ALES, Joshua J. BERGMAN, Ryan T. SWANSON, Jonathan K. WITTER, Danny GALICKI, James B. INMAN, Matt KRECICKI, Roger RIDGEWAY
-
Publication number: 20230317305Abstract: Carbide-based fuel assembly includes outer structural member of ceramic matrix composite material (e.g., SiC—SiC composite), insulation layer of porous refractory ceramic material (e.g., zirconium carbide with open-cell foam structure or fibrous zirconium carbide), and interior structural member of refractory ceramic-graphite composite material (e.g., zirconium carbide-graphite or niobium carbide-graphite). Spacer structures between various layers provide a defined and controlled spacing relationship. A fuel element bundle positioned between support meshes includes a plurality of distributively arranged fuel elements or a solid, unitary fuel element with coolant channels, each having a fuel composition including high assay, low enriched uranium (HALEU).Type: ApplicationFiled: June 6, 2023Publication date: October 5, 2023Applicants: BWXT Advanced Technologies LLC, BWXT Nuclear Energy, Inc.Inventors: Eric A. BARRINGER, Russell R. JENSEN, Jeremy L. GUSTAFSON, Matt ALES, Joshua J. BERGMAN, Ryan T. SWANSON, Jonathan K. WITTER, Danny GALICKI, James B. INMAN, Matt KRECICKI, Roger RIDGEWAY
-
Patent number: 11728044Abstract: Carbide-based fuel assembly includes outer structural member of ceramic matrix composite material, the interior surface of which is lined in higher temperature regions with an insulation layer of porous refractory ceramic material. Continuous insulation layer extends the length of the fuel assembly or separate insulation layer sections have a thickness increasing step-wise along the length of the fuel assembly from upper (inlet) section towards bottom (outlet) section. A fuel element positioned inward of the insulation layer and between support meshes has a fuel composition including HALEU and the form of a plurality of individual elongated fuel bodies or one or more fuel monolith bodies containing coolant flow channels. Fuel assemblies are distributively arranged in a moderator block, with upper end of the outer structural member attached to an inlet for propellant and lower end of the outer structural member operatively interfaced with a nozzle forming a nuclear thermal propulsion reactor.Type: GrantFiled: August 11, 2021Date of Patent: August 15, 2023Assignees: BWXT Advanced Technologies LLC, BWXT Nuclear Energy, Inc.Inventors: Eric A. Barringer, Russell R. Jensen, Jeremy L. Gustafson, Matt Ales, Joshua J. Bergman, Ryan T. Swanson, Jonathan K. Witter, Danny Galicki, James B. Inman, Matt Krecicki, Roger Ridgeway
-
Patent number: 11710578Abstract: Carbide-based fuel assembly includes outer structural member of ceramic matrix composite material (e.g., SiC—SiC composite), insulation layer of porous refractory ceramic material (e.g., zirconium carbide with open-cell foam structure or fibrous zirconium carbide), and interior structural member of refractory ceramic-graphite composite material (e.g., zirconium carbide-graphite or niobium carbide-graphite). Spacer structures between various layers provide a defined and controlled spacing relationship. A fuel element bundle positioned between support meshes includes a plurality of distributively arranged fuel elements or a solid, unitary fuel element with coolant channels, each having a fuel composition including high assay, low enriched uranium (HALEU).Type: GrantFiled: August 11, 2021Date of Patent: July 25, 2023Assignees: BWXT Advanced Technologies LLC, BWXT Nuclear Energy, Inc.Inventors: Eric A. Barringer, Russell R. Jensen, Jeremy L. Gustafson, Matt Ales, Joshua J. Bergman, Ryan T. Swanson, Jonathan K. Witter, Danny Galicki, James B. Inman, Matt Krecicki, Roger Ridgeway
-
Publication number: 20220351870Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: ApplicationFiled: June 29, 2022Publication date: November 3, 2022Applicant: BWXT Advanced Technologies LLCInventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER
-
Patent number: 11424041Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: GrantFiled: March 31, 2020Date of Patent: August 23, 2022Assignee: BWXT Advanced Technologies LLCInventors: Benjamin D. Fisher, John R. Salasin, Craig D. Gramlich, Jonathan K. Witter
-
Publication number: 20220115152Abstract: Carbide-based fuel assembly includes outer structural member of ceramic matrix composite material (e.g., SiC—SiC composite), insulation layer of porous refractory ceramic material (e.g., zirconium carbide with open-cell foam structure or fibrous zirconium carbide), and interior structural member of refractory ceramic-graphite composite material (e.g., zirconium carbide-graphite or niobium carbide-graphite). Spacer structures between various layers provide a defined and controlled spacing relationship. A fuel element bundle positioned between support meshes includes a plurality of distributively arranged fuel elements or a solid, unitary fuel element with coolant channels, each having a fuel composition including high assay, low enriched uranium (HALEU).Type: ApplicationFiled: August 11, 2021Publication date: April 14, 2022Applicants: BWXT Advanced Technologies LLC, BWXT Nuclear Energy, Inc.Inventors: Eric A. BARRINGER, Russell R. JENSEN, Jeremy L. GUSTAFSON, Matt ALES, Joshua J. BERGMAN, Ryan T. SWANSON, Jonathan K. WITTER, Danny GALICKI, James B. INMAN, Matt KRECICKI, Roger RIDGEWAY
-
Publication number: 20220115149Abstract: Carbide-based fuel assembly includes outer structural member of ceramic matrix composite material, the interior surface of which is lined in higher temperature regions with an insulation layer of porous refractory ceramic material. A continuous insulation layer extends the length of the fuel assembly or separate insulation layer sections have a thickness increasing step-wise along the length of the fuel assembly from upper (inlet) section towards bottom (outlet) section. A fuel element positioned inward of the insulation layer and between support meshes has a fuel composition including HALEU and has the form of a plurality of individual elongated fuel bodies or one or more fuel monolith bodies containing coolant flow channels. Fuel assemblies are distributively arranged in a moderator block, with upper end of the outer structural member attached to an inlet for propellant and lower end of the outer structural member operatively interfaced with a nozzle forming a NTP reactor.Type: ApplicationFiled: August 11, 2021Publication date: April 14, 2022Applicants: BWXT Advanced Technologies LLC, BWXT Nuclear Energy, Inc.Inventors: Eric A. BARRINGER, Russell R. JENSEN, Jeremy L. GUSTAFSON, Matt ALES, Joshua J. BERGMAN, Ryan T. SWANSON, Jonathan K. WITTER, Danny GALICKI, James B. INMAN, Matt KRECICKI, Roger RIDGEWAY
-
Publication number: 20200365290Abstract: Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.Type: ApplicationFiled: March 31, 2020Publication date: November 19, 2020Applicant: BWXT Advanced Technologies LLCInventors: Benjamin D. FISHER, John R. SALASIN, Craig D. GRAMLICH, Jonathan K. WITTER