Patents by Inventor Jonathan Kolbeck

Jonathan Kolbeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230406544
    Abstract: A thruster has a first stage and a second stage. The first stage is a plasma source that outputs a plasma. The second stage is an accelerator. In one embodiment, the second stage is a plasma accelerator that accelerates the plasma. In another embodiment, the second stage is an ion accelerator that accelerates the ions from the plasma.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 21, 2023
    Inventors: Michael KEIDAR, Jonathan Kolbeck, Denis Zolotukhin
  • Patent number: 11760508
    Abstract: A thruster has a first stage and a second stage. The first stage is a plasma source that outputs a plasma. The second stage is an accelerator. In one embodiment, the second stage is a plasma accelerator that accelerates the plasma. In another embodiment, the second stage is an ion accelerator that accelerates the ions from the plasma.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: September 19, 2023
    Assignee: The George Washington University
    Inventors: Michael Keidar, Jonathan Kolbeck, Denis Zolotukhin
  • Patent number: 11462389
    Abstract: Embodiments of the disclosure provided herein include an apparatus and method for the plasma processing of a substrate in a processing chamber. More specifically, embodiments of this disclosure describe a biasing scheme that is configured to provide a radio frequency (RF) generated RF waveform from an RF generator to one or more electrodes within a processing chamber and a pulsed-voltage (PV) waveform delivered from one or more pulsed-voltage (PV) generators to the one or more electrodes within the processing chamber. The plasma process(es) disclosed herein can be used to control the shape of an ion energy distribution function (IEDF) and the interaction of the plasma with a surface of a substrate during plasma processing.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Leonid Dorf, Rajinder Dhindsa, James Rogers, Daniel Sang Byun, Evgeny Kamenetskiy, Yue Guo, Kartik Ramaswamy, Valentin N. Todorow, Olivier Luere, Jonathan Kolbeck, Linying Cui
  • Publication number: 20220037120
    Abstract: Embodiments of the disclosure provided herein include an apparatus and method for the plasma processing of a substrate in a processing chamber. More specifically, embodiments of this disclosure describe a biasing scheme that is configured to provide a radio frequency (RF) generated RF waveform from an RF generator to one or more electrodes within a processing chamber and a pulsed-voltage (PV) waveform delivered from one or more pulsed-voltage (PV) generators to the one or more electrodes within the processing chamber. The plasma process(es) disclosed herein can be used to control the shape of an ion energy distribution function (IEDF) and the interaction of the plasma with a surface of a substrate during plasma processing.
    Type: Application
    Filed: May 7, 2021
    Publication date: February 3, 2022
    Inventors: Leonid DORF, Rajinder DHINDSA, James ROGERS, Daniel Sang BYUN, Evgeny KAMENETSKIY, Yue GUO, Kartik RAMASWAMY, Valentin N. TODOROW, Olivier LUERE, Jonathan KOLBECK, Linying CUI
  • Patent number: 11077962
    Abstract: A thruster for a micro-satellite is disclosed. The thruster includes a cathode composed of a propellant material and an anode composed of ablative material. The thruster includes a housing having a proximate end and an opposite distal end having a thrust channel. The housing holds the anode and the cathode. A pulsed voltage source is coupled between the cathode and the anode causing current sufficient to create ablation of the anode and a plasma jet including ablated particles from the anode to be emitted from the thrust channel.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: August 3, 2021
    Assignee: The George Washington University
    Inventors: Michael Keidar, George Lewis Teel, Joseph Nicholas Lukas, Jonathan Kolbeck
  • Publication number: 20200361636
    Abstract: A thruster has a first stage and a second stage. The first stage is a plasma source that outputs a plasma. The second stage is an accelerator. In one embodiment, the second stage is a plasma accelerator that accelerates the plasma. In another embodiment, the second stage is an ion accelerator that accelerates the ions from the plasma.
    Type: Application
    Filed: October 10, 2018
    Publication date: November 19, 2020
    Inventors: Michael KEIDAR, Jonathan KOLBECK, Denis ZOLOTUKHIN
  • Publication number: 20180370659
    Abstract: A thruster for a micro-satellite is disclosed. The thruster includes a cathode composed of a propellant material and an anode composed of ablative material. The thruster includes a housing having a proximate end and an opposite distal end having a thrust channel. The housing holds the anode and the cathode. A pulsed voltage source is coupled between the cathode and the anode causing current sufficient to create ablation of the anode and a plasma jet including ablated particles from the anode to be emitted from the thrust channel.
    Type: Application
    Filed: December 6, 2016
    Publication date: December 27, 2018
    Applicant: The George Washington University
    Inventors: Michael Keidar, George Lewis Teel, Joseph Nicholas Lukas, Jonathan Kolbeck
  • Patent number: 9683285
    Abstract: This disclosure provides systems, methods, and apparatus related to blocking macroparticles in deposition processes utilizing plasmas. In one aspect, an apparatus includes a cathode, a substrate holder, a first magnet, a second magnet, and a structure. The cathode is configured to generate a plasma. The substrate holder is configured to hold a substrate. The first magnet is disposed proximate a first side of the cathode. The second magnet is disposed proximate a second side of the substrate holder. A magnetic field exists between the first magnet and the second magnet and a flow of the plasma substantially follows the magnetic field. The structure is disposed between the second side of the cathode and the first side of the substrate holder and is positioned proximate a region where the magnetic field between the first magnet and the second magnet is weak.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: June 20, 2017
    Assignee: The Regents of the University of California
    Inventors: Andre Anders, Jonathan Kolbeck
  • Publication number: 20140284207
    Abstract: This disclosure provides systems, methods, and apparatus related to blocking macroparticles in deposition processes utilizing plasmas. In one aspect, an apparatus includes a cathode, a substrate holder, a first magnet, a second magnet, and a structure. The cathode is configured to generate a plasma. The substrate holder is configured to hold a substrate. The first magnet is disposed proximate a first side of the cathode. The second magnet is disposed proximate a second side of the substrate holder. A magnetic field exists between the first magnet and the second magnet and a flow of the plasma substantially follows the magnetic field. The structure is disposed between the second side of the cathode and the first side of the substrate holder and is positioned proximate a region where the magnetic field between the first magnet and the second magnet is weak.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 25, 2014
    Applicant: The Regents of the University of California
    Inventors: Andre Anders, Jonathan Kolbeck