Patents by Inventor Jonathan LUFF
Jonathan LUFF has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250251494Abstract: A LIDAR system has a semiconductor chip with a lateral side between the top side and the bottom side of the semiconductor chip. The lateral side includes a curved portion. The semiconductor chip also includes a slab waveguide with a facet defined by the curved portion of the lateral side of the semiconductor chip. The semiconductor chip is configured to guide outgoing LIDAR signals through the slab waveguide such that the outgoing LIDAR signal exits the slab waveguide through the curved portion of the lateral side.Type: ApplicationFiled: February 1, 2024Publication date: August 7, 2025Inventors: Mehdi Asghari, Prakash Koonath, Bradley Jonathan Luff
-
Publication number: 20250216550Abstract: Systems and methods described herein are directed to polarization separation of incoming light signals associated with an imaging system, such as a Light Detection and Ranging (LIDAR) system. Example embodiments describe a system configured to direct incoming light signals to a polarization separator and capture the two polarization states of the incoming light signals. The system may process the two polarization states of the incoming light signals separately to extract information associated with reflecting objects within the field-of-view of the imaging system. The polarization separator may be a birefringent crystal positioned adjacent to an edge of a photonic integrated circuit (PIC) that is used for processing outgoing and incoming light signals associated with the imaging system. The PIC may include at least one on-chip polarization rotator for converting a light signal of one polarization state to a light signal of another polarization state.Type: ApplicationFiled: March 12, 2025Publication date: July 3, 2025Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Patent number: 12339399Abstract: An optical system has a LIDAR chip that includes a switch configured to direct an outgoing LIDAR signal to one of multiple different alternate waveguides. The system also includes a redirection component configured to receive the outgoing LIDAR signal from any one of the alternate waveguides. The redirection component is also configured to redirect the received outgoing LIDAR signal such that a direction that the outgoing LIDAR signal travels away from the redirection component changes in response to changes in the alternate waveguide to which the optical switch directs the outgoing LIDAR signal.Type: GrantFiled: July 6, 2022Date of Patent: June 24, 2025Assignee: SiLC Technologies, Inc.Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
-
Patent number: 12276728Abstract: Systems and methods described herein are directed to polarization separation of incoming light signals associated with an imaging system, such as a Light Detection and Ranging (LIDAR) system. Example embodiments describe a system configured to direct incoming light signals to a polarization separator and capture the two polarization states of the incoming light signals. The system may process the two polarization states of the incoming light signals separately to extract information associated with reflecting objects within the field-of-view of the imaging system. The polarization separator may be a birefringent crystal positioned adjacent to an edge of a photonic integrated circuit (PIC) that is used for processing outgoing and incoming light signals associated with the imaging system. The PIC may include at least one on-chip polarization rotator for converting a light signal of one polarization state to a light signal of another polarization state.Type: GrantFiled: September 6, 2023Date of Patent: April 15, 2025Assignee: SiLC Technologies, Inc.Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Publication number: 20250012971Abstract: An optical interconnect device and the method of fabricating it are described. The device includes an in-plane laser cavity transmitting a light beam along a first direction, a Franz Keldysh (FK) optical modulator transmitting the light beam along the first direction, a mode-transfer module including a tapered structure disposed after the FK optical modulator along the first direction to enlarge the spot size of the light beam to match an external optical fiber and a universal coupler controlling the light direction. The tapered structure can be made linear or non-linear along the first direction. The universal coupler passes the laser light to an in-plane external optical fiber if the fiber is placed along the first direction, or it is a vertical coupler in the case that the external optical fiber is placed perpendicularly to the substrate surface. The coupler is coated with highly reflective material.Type: ApplicationFiled: September 17, 2024Publication date: January 9, 2025Applicant: MELLANOX TECHNOLOGIES, LTD.Inventors: Elad MENTOVICH, Dimitrios KALAVROUZIOTIS, Jonathan LUFF, Wei QIAN, Dazeng FENG
-
Publication number: 20250004200Abstract: An optical interconnect device and the method of fabricating it are described. The device includes an in-plane laser cavity transmitting a light beam along a first direction, a Franz Keldysh (FK) optical modulator transmitting the light beam along the first direction, a mode-transfer module including a tapered structure disposed after the FK optical modulator along the first direction to enlarge the spot size of the light beam to match an external optical fiber and a universal coupler controlling the light direction. The tapered structure can be made linear or non-linear along the first direction. The universal coupler passes the laser light to an in-plane external optical fiber if the fiber is placed along the first direction, or it is a vertical coupler in the case that the external optical fiber is placed perpendicularly to the substrate surface. The coupler is coated with highly reflective material.Type: ApplicationFiled: September 12, 2024Publication date: January 2, 2025Applicant: MELLANOX TECHNOLOGIES, LTD.Inventors: Elad MENTOVICH, Dimitrios KALAVROUZIOTIS, Jonathan LUFF, Wei QIAN, Dazeng FENG
-
Patent number: 12140712Abstract: A LIDAR system includes a light source configured to output light. A portion of the light is included in a LIDAR signal that travels a LIDAR path from the light source to an object located outside of the LIDAR system and from the object to a filter and from the filter to a processing unit. The processing unit is configured to convert optical signals that include the LIDAR signal to electrical signals. A portion of the light is also included in one or more misdirected signals. Each of the misdirected signals travels a different misdirected path from the light source to the filter. Each of the misdirected paths is a different path from the LIDAR path. The system also includes a filter being configured to filter out the LIDAR signal from the misdirected signals. The system also includes electronics that generate LIDAR data from the electrical signals.Type: GrantFiled: October 9, 2020Date of Patent: November 12, 2024Assignee: SiLC Technologies, Inc.Inventors: Prakash Koonath, Bradley Jonathan Luff
-
Patent number: 12130473Abstract: An optical interconnect device and the method of fabricating it are described. The device includes an in-plane laser cavity transmitting a light beam along a first direction, a Franz Keldysh (FK) optical modulator transmitting the light beam along the first direction, a mode-transfer module including a tapered structure disposed after the FK optical modulator along the first direction to enlarge the spot size of the light beam to match an external optical fiber and a universal coupler controlling the light direction. The tapered structure can be made linear or non-linear along the first direction. The universal coupler passes the laser light to an in-plane external optical fiber if the fiber is placed along the first direction, or it is a vertical coupler in the case that the external optical fiber is placed perpendicularly to the substrate surface. The coupler is coated with highly reflective material.Type: GrantFiled: January 2, 2020Date of Patent: October 29, 2024Assignee: Mellanox Technologies, Ltd.Inventors: Jonathan Luff, Wei Qian, Dimitrios Kalavrouziotis, Elad Mentovich, Dazeng Feng
-
Publication number: 20240302508Abstract: A LIDAR system includes a light source configured to generate an outgoing light signal that includes multiple channels that are each of a different wavelength. The system includes optical components that generate composite light signals. Each composite light signal includes light from a LIDAR input signal combined with light from a reference signal. The LIDAR input signals each includes light that was reflected by an object located apart from the system and that was included also in one of the channels. The reference signals do not include light that was reflected by the object but include light from one of the channels. Each of the composite signals is generated such that the reference signal and the LIDAR input included in the composite signal includes light from the same channel.Type: ApplicationFiled: May 14, 2024Publication date: September 12, 2024Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
-
Patent number: 12025749Abstract: A LIDAR system includes a light source configured to generate an outgoing light signal that includes multiple channels that are each of a different wavelength. The system includes optical components that generate composite light signals. Each composite light signal includes light from a LIDAR input signal combined with light from a reference signal. The LIDAR input signals each includes light that was reflected by an object located apart from the system and that was included also in one of the channels. The reference signals do not include light that was reflected by the object but include light from one of the channels. Each of the composite signals is generated such that the reference signal and the LIDAR input included in the composite signal includes light from the same channel.Type: GrantFiled: October 1, 2019Date of Patent: July 2, 2024Assignee: SiLC Technologies, Inc.Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
-
Patent number: 12019185Abstract: A LIDAR system concurrently outputs multiple LIDAR output signals that concurrently illuminate the same sample region in a field of view for a data period. The sample region is one of multiple sample regions included in the field of view. The LIDAR system also includes electronics that use the multiple LIDAR output signals to generate LIDAR data for the sample region. The LIDAR data includes a distance and/or a radial velocity between the LIDAR system and an object that reflects the LIDAR output signals.Type: GrantFiled: April 14, 2020Date of Patent: June 25, 2024Assignee: SiLC Technologies, Inc.Inventors: Majid Boloorian, Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
-
Patent number: 11982743Abstract: A LIDAR system has one or more light splitters and multiple light combiners. The LIDAR system also has multiple optical pathways through which light signals travel. The optical pathways include delay pathways that each extends from one of the one or more splitters to one of the light combiners. The optical pathways include expedited pathways that each extends from one of the splitters to one of the light combiners. Each of the light combiners has one of the delay pathways and one of the expedited pathways extending to the light combiner. The delay pathways and the expedited pathways are configured such that the delay pathway to each light combiner is longer than the expedited pathway to the same light combiner. Each of the delay pathways has a common portion and a separated portion. The common portion of each delay pathway is shared by the other delay pathways. In contrast, the separated portion of a delay pathways is not shared with the other delay pathways.Type: GrantFiled: April 29, 2021Date of Patent: May 14, 2024Assignee: SiLC Technologies, Inc.Inventors: Chen Chen, Bradley Jonathan Luff
-
Patent number: 11940566Abstract: A LIDAR system includes one or more optical components that output multiple system output signals. The system also includes electronics that use light from the system output signals to generate LIDAR data. The LIDAR data indicates a distance and/or radial velocity between the LIDAR system and one or more object located outside of the LIDAR system. The electronics including a series processing component that processes electrical signals that are each generated from one of the system output signals. The series processing component processes the electrical signals generated from different system output signals in series.Type: GrantFiled: July 7, 2020Date of Patent: March 26, 2024Assignee: SiLC Technologies, Inc.Inventors: Mehdi Asghari, Bradley Jonathan Luff
-
Publication number: 20240061082Abstract: A LIDAR system includes a waveguide array configured to output a LIDAR output signal such that the LIDAR output signal is reflected by an object located off the LIDAR chip. The system also includes electronics configured to tune a wavelength of the LIDAR output signal such that the direction that the LIDAR output signal travels away from the LIDAR chip changes in response to the tuning of the wavelength by the electronics.Type: ApplicationFiled: October 12, 2019Publication date: February 22, 2024Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
-
Patent number: 11892565Abstract: A LIDAR system includes a waveguide array configured to output a LIDAR output signal such that the LIDAR output signal is reflected by an object located off the LIDAR chip. The system also includes electronics configured to tune a wavelength of the LIDAR output signal such that the direction that the LIDAR output signal travels away from the LIDAR chip changes in response to the tuning of the wavelength by the electronics.Type: GrantFiled: October 12, 2019Date of Patent: February 6, 2024Assignee: SiLC Technologies, Inc.Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
-
Publication number: 20230417910Abstract: Systems and methods described herein are directed to polarization separation of incoming light signals associated with an imaging system, such as a Light Detection and Ranging (LIDAR) system. Example embodiments describe a system configured to direct incoming light signals to a polarization separator and capture the two polarization states of the incoming light signals. The system may process the two polarization states of the incoming light signals separately to extract information associated with reflecting objects within the field-of-view of the imaging system. The polarization separator may be a birefringent crystal positioned adjacent to an edge of a photonic integrated circuit (PIC) that is used for processing outgoing and incoming light signals associated with the imaging system. The PIC may include at least one on-chip polarization rotator for converting a light signal of one polarization state to a light signal of another polarization state.Type: ApplicationFiled: September 6, 2023Publication date: December 28, 2023Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Patent number: 11796677Abstract: A LIDAR system includes a LIDAR chip and local electronics that receive signals from the LIDAR chip. The local electronics are configured to operate one or more components on the LIDAR chip such that the LIDAR chip transmits an optical data signal from the LIDAR chip such that optical data signal includes data generated from the signals received from the LIDAR chip.Type: GrantFiled: September 13, 2018Date of Patent: October 24, 2023Assignee: SiLC Technologies, Inc.Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
-
Patent number: 11796651Abstract: A Frequency Modulated Continuous Wave (FMCW) LIDAR system has a LIDAR chip configured to output a LIDAR output signal with a wavelength between 1290 nm and 1310 nm. The LIDAR chip is also configured to receive a LIDAR input signal from off of the LIDAR chip. The LIDAR input signal including light from the LIDAR output signal after reflection of the LIDAR output signal by an object located off the LIDAR chip. The LIDAR chip is configured to generate a composite signal that includes light from a comparative light signal and light from a reference signal. The comparative signal includes light from the LIDAR output signal but the reference signal does not include light from the LIDAR output signal.Type: GrantFiled: May 15, 2020Date of Patent: October 24, 2023Assignee: SiLC Technologies, Inc.Inventors: Bradley Jonathan Luff, Dazeng Feng, Mehdi Asghari, Majid Boloorian
-
Patent number: 11789154Abstract: Systems and methods described herein are directed to high speed remote imaging systems, such as Light Detection and Ranging (LIDAR) systems. Example embodiments describe systems that are configured to mitigate a walk-off effect that may limit a speed of operation of the imaging system. The walk-off effect may be characterized by a failure to steer returning signals to a designated input facet of the imaging system due to continuous rotation of mirrors associated with the steering mechanisms. The walk-off effect may be mitigating by configuring more than one input waveguide to receiving returning signals associated with an output signal. The input waveguides may be spaced apart and configured to sequentially receive the input signals. In some embodiments, walk-off mitigation may extend a range of operation of the imaging systems.Type: GrantFiled: July 17, 2020Date of Patent: October 17, 2023Assignee: SiLC Technologies, Inc.Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
-
Patent number: 11789149Abstract: Systems and methods described herein are directed to polarization separation of laser signals and/or incoming light signals associated with an imaging system, such as a Light Detection and Ranging (LIDAR) system. Example embodiments describe a system configured to direct incoming light signals to a polarization separator and capturing the two polarization states of the incoming light signals. In some instances, the laser signal may be converted into two different polarization states. The system may individually process the two polarization states of the incoming light signals along with the corresponding polarization state of the laser reference signal to extract information associated with reflecting objects within the field-of-view of the imaging system. The polarization separator may be a birefringent crystal positioned adjacent to an edge of a photonic integrated circuit (PIC) that is used for processing outgoing and incoming light signals associated with the imaging system.Type: GrantFiled: October 4, 2020Date of Patent: October 17, 2023Assignee: SiLC Technologies, Inc.Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour