Patents by Inventor Jonathan M. McConnachie

Jonathan M. McConnachie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9505676
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and oxygenate into products containing acetylene and carbon monoxide. The invention also relates to utilizing at least a portion of the acetylene and carbon monoxide for producing xylenes such as p-xylene, utilizing at least a portion of xylenes for producing polymeric fibers, and to equipment useful for these processes.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: November 29, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary D. Mohr, Jonathan M. McConnachie, Paul F. Keusenkothen, Frank Hershkowitz
  • Patent number: 9328049
    Abstract: The invention relates to processes for converting hydrocarbons to phthalic acids such as terephthalic acid. The invention also relates to polymerizing phthalic acid derivatives to produce, e.g., synthetic fibers.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: May 3, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary D. Mohr, Paul F. Keusenkothen, Frank Hershkowitz, Jonathan M. McConnachie
  • Patent number: 8968555
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a copper sulfide reagent. The present invention employs the use of a copper sulfide reagent to convert alkali metal hydrosulfides in the generation or regeneration of the alkali hydroxide compounds which may be utilized in a desulfurization process for hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which form as byproducts of the desulfurization process, and are non-regenerable with copper sulfide, are removed from the alkali hydroxide stream.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 3, 2015
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, James R. Bielenberg, Chris A. Wright, Leo D. Brown
  • Patent number: 8696889
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a transition metal oxide. The present invention employs the use of a transition metal oxide, preferably copper oxide, in order to convert spent alkali metal hydrosulfides in the regeneration of the alkali hydroxide compounds for reutilization in the desulfurization process for the hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which may be detrimental to the overall desulfurization process and related equipment are removed from the regenerated alkali metal stream.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: James R. Bielenberg, Jonathan M. McConnachie, Daniel P. Leta, Chris A. Wright, Leo D. Brown
  • Patent number: 8696890
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. After separation of the spent alkali metal reagent, the resulting product can have suitable characteristics for pipeline transport and/or further refinery processing.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jorge L. Soto, Michael Raterman, Daniel P. Leta, Walter D. Vann, Lu Han, Jonathan M. McConnachie, James R. Bielenberg, William C. Baird, Jr., Roby Bearden, Jr.
  • Patent number: 8673132
    Abstract: The present invention relates to a process for regeneration of alkali metal salt reagent used in desulfurization of heavy oil feedstreams. In particular, the present invention relates to a process utilizing potassium hydroxide as an external supply reagent to a heavy oil conversion process and in-situ conversion of the spent reactants utilized in such process into a potassium sulfide reagent for reintroduction into the heavy oil conversion process.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, William C. Baird, Jr., Walter D. Vann, Jorge L. Soto
  • Publication number: 20130310601
    Abstract: The invention relates to processes for converting hydrocarbons to phthalic acids such as terephthalic acid. The invention also relates to polymerizing phthalic acid derivatives to produce, e.g., synthetic fibers.
    Type: Application
    Filed: April 18, 2013
    Publication date: November 21, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Gary D. MOHR, Paul F. KEUSENKOTHEN, Frank HERSHKOWITZ, Jonathan M. MCCONNACHIE
  • Publication number: 20130296620
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and oxygenate into products containing acetylene and carbon monoxide. The invention also relates to utilizing at least a portion of the acetylene and carbon monoxide for producing xylenes such as p-xylene, utilizing at least a portion of xylenes for producing polymeric fibers, and to equipment useful for these processes.
    Type: Application
    Filed: April 9, 2013
    Publication date: November 7, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Gary D. Mohr, Jonathan M. McConnachie, Paul F. Keusenkothen, Frank Hershkowitz
  • Patent number: 8404106
    Abstract: After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 26, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jorge L. Soto, Daniel P. Leta, Lu Han, Walter D. Vann, Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg, Jonathan M. McConnachie, Leo D. Brown, William C. Baird, Jr., Roby Bearden, Jr.
  • Patent number: 8398848
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a copper metal reagent. The present invention employs the use of a copper metal reagent to convert spent alkali metal hydrosulfides in the regeneration of the alkali hydroxide compounds for reutilization in the desulfurization process for the hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which may be detrimental to the overall desulfurization process and related equipment are removed from the regenerated alkali metal stream.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jonathan M. McConnachie, Daniel P Leta, James R. Bielenberg, Chris A. Wright, Leo D. Brown
  • Publication number: 20120234728
    Abstract: The present invention relates to a process for regeneration of alkali metal salt reagent used in desulfurization of heavy oil feedstreams. In particular, the it present invention relates to a process utilizing potassium hydroxide as an external supply reagent to a heavy oil conversion process and in-situ conversion of the spent reactants utilized in such process into a potassium sulfide reagent for reintroduction into the heavy oil conversion process.
    Type: Application
    Filed: March 28, 2012
    Publication date: September 20, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Daniel P. Leta, Jonathan M. McConnachie, William C. Baird, JR., Walter D. Vann, Jorge L. Soto
  • Patent number: 8216958
    Abstract: A method for hydrodesulfurizing FCC naphtha is described. More particularly, a Co/Mo metal hydrogenation component is loaded on a silica or modified silica support in the presence of organic ligand and sulfided to produce a catalyst which is then used for hydrodesulfurizing FCC naphtha. The silica support has a defined pore size distribution which minimizes olefin saturation.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: July 10, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jason Wu, Chuansheng Bai, Thomas R. Halbert, Stuart L. Soled, Sabato Miseo, Jonathan M. McConnachie, Valery Sokolovskii, David M. Lowe, Anthony F. Volpe, Jr., Jun Han
  • Patent number: 8075762
    Abstract: The electrodesulfurization of heavy oils wherein a feedstream comprised of bitumen or heavy oil is conducted, along with an effective amount of hydrogen, to an electrochemical cell. A current is applied to the cell wherein sulfur from the feedstream combines with hydrogen to form hydrogen sulfide which is removed.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: December 13, 2011
    Assignee: ExxonMobil Reseach and Engineering Company
    Inventors: Mark A. Greaney, Chris A. Wright, Jonathan M. McConnachie, Howard Freund, Kun Wang
  • Publication number: 20110147273
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. After separation of the spent alkali metal reagent, the resulting product can have suitable characteristics for pipeline transport and/or further refinery processing.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jorge L. Soto, Michael Raterman, Daniel P. Leta, Walter D. Vann, Lu Han, Jonathan M. McConnachie, James R. Bielenberg, William C. Baird, JR., Roby Bearden, JR.
  • Publication number: 20110147274
    Abstract: After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jorge L. Soto, Daniel P. Leta, Lu Han, Walter D. Vann, Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg, Jonathan M. McConnachie, Leo D. Brown, William C. Baird, JR., Roby Bearden, JR.
  • Publication number: 20110119992
    Abstract: The present invention relates to novel interstitial metal hydrides and catalyst containing interstitial metal hydrides that are resistant to oxidation and resultant loss of catalytic activity. The processes of the present invention include use of these improved, oxidation resistant interstitial metal hydride compositions for improved overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang, Gordon F. Stuntz, Jonathan M. McConnachie, Heather A. Elsen, Patricia A. Bielenberg
  • Publication number: 20110119990
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANHY
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan M. McConnachie, Faiz Pourarian
  • Publication number: 20100320123
    Abstract: A method for hydrodesulfurizing FCC naphtha is described. More particularly, a Co/Mo metal hydrogenation component is loaded on a silica or modified silica support in the presence of organic ligand and sulfided to produce a catalyst which is then used for hydrodesulfurizing FCC naphtha. The silica support has a defined pore size distribution which minimizes olefin saturation.
    Type: Application
    Filed: January 12, 2007
    Publication date: December 23, 2010
    Inventors: Jason Wu, Chuansheng Bai, Thomas R. Halbert, Stuart L. Soled, Sabato Miseo, Jonathan M. Mcconnachie, Valery Sokolovskii, David M. Lowe, Anthony F. Volpe, JR., Jun Han
  • Patent number: 7731838
    Abstract: The instant invention relates to a process to produce low sulfur diesel products through the hydrodesulfurization of low nitrogen diesel boiling range feedstreams in the presence of solid acidic materials.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: June 8, 2010
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Jonathan M. McConnachie, Catalina L. Coker, Madhav Acharya
  • Publication number: 20100084316
    Abstract: The present invention is a process for desulfurizing hydrocarbon feedstreams with alkali metal compounds and regenerating the alkali metal compounds via the use of a transition metal oxide. The present invention employs the use of a transition metal oxide, preferably copper oxide, in order to convert spent alkali metal hydrosulfides in the regeneration of the alkali hydroxide compounds for reutilization in the desulfurization process for the hydrocarbon feedstreams. Additionally, in preferred embodiments of the processes disclosed herein, carbonates which may be detrimental to the overall desulfurization process and related equipment are removed from the regenerated alkali metal stream.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 8, 2010
    Inventors: James R. Bielenberg, Jonathan M. McConnachie, Daniel P. Leta, Chris A. Wright, Leo D. Brown