Patents by Inventor Jonathan M. Rubin

Jonathan M. Rubin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230165567
    Abstract: A method of estimating lung motion (e.g., local lung motion and local lung ventilation) includes collecting a time series of ultrasound images of a lung surface, the time series including a plurality of frames, identifying a lung surface in one of the plurality of frames, and subsetting each of the plurality of frames into at least one sub-image. The method further includes applying a high pass temporal filter and a spatial filter. The method still further includes calculating inter-frame motion data from complex data sets associated with one or more pairs of temporally successive frames. In a further method, lung surface longitudinal strain is also calculated.
    Type: Application
    Filed: May 7, 2021
    Publication date: June 1, 2023
    Inventors: Jonathan M. Rubin, J. Brian Fowlkes, Oliver D. Kripfgans, James D. Hamilton, Christopher Fung
  • Patent number: 11529122
    Abstract: A method of evaluating tissue stiffness of a target area includes positioning an ultrasound elasticity imaging apparatus adjacent a surface of an area of tissue where the target area is located and applying a dynamic range of force to the tissue. A plurality of ultrasound beams can be directed at the tissue and a plurality of ultrasound echoes can be acquired from the strained tissue in the target area to calculate an amount of developed strain within the target area.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 20, 2022
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, The Regents of the University of Michigan
    Inventors: Kang Kim, Jingping Xu, Jonathan M Rubin
  • Publication number: 20220087647
    Abstract: A method of estimating lung motion includes collecting multiple ultrasound image data captured at one or more locations of a sample region of tissue. The method further includes comparing the multiple ultrasound image data and determining temporal correlation coefficients between each of the multiple ultrasound image data. The method still further includes displaying an image of the sample region of the tissue with the temporal correlation coefficients identified, thereby indicating lung motion. In further methods, the determined temporal correlation coefficients are used to determine an amount of decorrelation, which can be used to determine strain of the tissue over the sample region and to calculate lung displacements and lung shape changes representing ventilation.
    Type: Application
    Filed: February 5, 2020
    Publication date: March 24, 2022
    Inventors: Jonathan M. Rubin, James D. Hamilton, Oliver D. Kripfgans, J. Brian Fowlkes
  • Publication number: 20200146654
    Abstract: A method of evaluating tissue stiffness of a target area includes positioning an ultrasound elasticity imaging apparatus adjacent a surface of an area of tissue where the target area is located and applying a dynamic range of force to the tissue. A plurality of ultrasound beams can be directed at the tissue and a plurality of ultrasound echoes can be acquired from the strained tissue in the target area to calculate an amount of developed strain within the target area.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 14, 2020
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, The Regents of the University of Michigan
    Inventors: Kang Kim, Jingping Xu, Jonathan M Rubin
  • Patent number: 10258277
    Abstract: A system and method for determining fractional fat content of tissue comprises registering thermoacoustic image coordinates to an acquired ultrasound image, the acquired ultrasound image at least comprising target tissue within a region of interest; defining a thermoacoustic voxel grid coincident with the region of interest; obtaining thermoacoustic image measurement values from tissue within the region of interest corresponding to the voxels within the defined thermoecoustic voxel grid to yield a thermoacoustic measurement matrix; normalizing the thermoacoustic image measurement values within the thermoacoustic measurement matrix; calculating a fractional fat content map for the target tissue within the region of interest based on the normalized thermoacoustic image measurement values within the thermoacoustic measurement matrix and a reference thermoacoustic measurement value; and correcting the fractional fat content map based on tissue speed-of-sound data to yield a final fractional fat content map for th
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: April 16, 2019
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jonathan M. Rubin, Michael M. Thornton, Aghapi Mordovanakis
  • Publication number: 20190038220
    Abstract: A system and method for determining fractional fat content of tissue comprises registering thermoacoustic image coordinates to an acquired ultrasound image, the acquired ultrasound image at least comprising target tissue within a region of interest; defining a thermoacoustic voxel grid coincident with the region of interest; obtaining thermoacoustic image measurement values from tissue within the region of interest corresponding to the voxels within the defined thermoecoustic voxel grid to yield a thermoacoustic measurement matrix; normalizing the thermoacoustic image measurement values within the thermoacoustic measurement matrix; calculating a fractional fat content map for the target tissue within the region of interest based on the normalized thermoacoustic image measurement values within the thermoacoustic measurement matrix and a reference thermoacoustic measurement value; and correcting the fractional fat content map based on tissue speed-of-sound data to yield a final fractional fat content map for th
    Type: Application
    Filed: June 14, 2018
    Publication date: February 7, 2019
    Applicant: ENDRA Life Sciences Inc.
    Inventors: Jonathan M. Rubin, Michael M. Thornton, Aghapi Mordovanakis
  • Publication number: 20170100099
    Abstract: A method of evaluating tissue stiffness of a target area includes positioning an ultrasound elasticity imaging apparatus adjacent a surface of an area of tissue where the target area is located and applying a dynamic range of force to the tissue. A plurality of ultrasound beams can be directed at the tissue and a plurality of ultrasound echoes can be acquired from the strained tissue in the target area to calculate an amount of developed strain within the target area.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, The Regents of the University of Michigan
    Inventors: Kang Kim, Jingping Xu, Jonathan M. Rubin
  • Patent number: 9554777
    Abstract: A method of evaluating tissue stiffness of a target area includes positioning an ultrasound elasticity imaging apparatus adjacent a surface of an area of tissue where the target area is located and applying a dynamic range of force to the tissue. A plurality of ultrasound beams can be directed at the tissue and a plurality of ultrasound echoes can be acquired from the strained tissue in the target area to calculate an amount of developed strain within the target area.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: January 31, 2017
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, The Regents of the University of Michigan
    Inventors: Kang Kim, Jingping Xu, Jonathan M. Rubin
  • Publication number: 20140094702
    Abstract: A method of evaluating tissue stiffness of a target area includes positioning an ultrasound elasticity imaging apparatus adjacent a surface of an area of tissue where the target area is located and applying a dynamic range of force to the tissue. A plurality of ultrasound beams can be directed at the tissue and a plurality of ultrasound echoes can be acquired from the strained tissue in the target area to calculate an amount of developed strain within the target area.
    Type: Application
    Filed: May 23, 2012
    Publication date: April 3, 2014
    Applicants: The Regents of the University of Michigan, University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Kang Kim, Jingping Xu, Jonathan M. Rubin
  • Patent number: 8167804
    Abstract: An optimized elastic modulus reconstruction procedure can estimate the nonlinear elastic properties of vascular wall from intramural strain and pulse wave velocity (PWV) measurements. A noninvasive free-hand ultrasound scanning procedure is used to apply external force, comparable to the force in measuring a subject's blood pressure, to achieve higher strains by equalizing the internal arterial baseline pressure. PWV is estimated at the same location where intramural strain is measured. The reconstructed elastic modulus is optimized and the arterial elastic modulus can be determined and monitored using a simple dual elastic modulus reconstruction procedure.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: May 1, 2012
    Assignee: The Regents of the University of Michigan
    Inventors: Kang Kim, William F. Weitzel, Jonathan M. Rubin, Congxian Jia, Matthew O'Donnell, Theodore J. Kolias
  • Patent number: 7542544
    Abstract: An ultrasonic imaging system acquires echo signals from an object being imaged such as a moving coronary artery and the cross-correlation between echo signals is employed as an objective measure of relative object location. The method is used in a prescan procedure to determine an optimal gating window to acquire image data during a cardiac gated scan, and it is used during the scan as a real time gating signal.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: June 2, 2009
    Assignee: The Regents of the University of Michigan
    Inventors: Jonathan M. Rubin, Jeffrey Brian Fowlkes, Charles R. Meyer, Srini Tridandapani
  • Patent number: 7318804
    Abstract: Methods and systems for measuring mechanical property of a vascular wall and a method and system for determining health of a vascular structure are provided wherein local deformation of a vessel wall resulting from physiologic pressures with altered transmural forces is measured. A non-invasive free-hand ultrasound scanning-procedure was performed to apply external force, comparable to the force generated in measuring a subject's blood pressure, to achieve higher strains by equalizing the internal arterial baseline pressure. When the applied pressure matched the internal baseline diastolic pressure, strain and strain rate increased by a factor of 10 over a cardiac cycle. Radial arterial strain was assessed in the vessel wall over the entire deformation procedure using a phase-sensitive, two-dimensional speckle-tracking algorithm. An elastic modulus reconstruction procedure was developed to estimate the non-linear elastic properties of the vascular wall.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: January 15, 2008
    Assignee: The Regents of the University of Michigan
    Inventors: William F. Weitzel, Kang Kim, Matthew O'Donnell, Jonathan M. Rubin, Hua Xie, Xunchang Chen
  • Patent number: 7154987
    Abstract: An x-ray CT system performs a scan by acquiring projection views from which an image is reconstructed. In a prospective embodiment, the correlation of adjacent views is calculated as the scan is performed and is used to detect subject motion as the scan is being performed. In a retrospective embodiment, the correlation of adjacent views is calculated and is used to detect subject motion after the scan is completed. In the first embodiment substitute projection views are acquired by continuing the scan and in the second embodiment redundant projection views acquired during the scan are substituted until the best possible image is produced.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: December 26, 2006
    Assignee: The Regents of the University of Michigan
    Inventors: Jonathan M. Rubin, Benoit Desjardins, J. Brian Fowlkes, Srini Tridandapani
  • Patent number: 6709414
    Abstract: A system and method are provided for determining the performance of a vessel, such as a hemodialysis access, which communicates blood between two locations of a patient. A conduit, such as an external dialysis circuit or an intravascular catheter, is provided in fluid communication with the vessel, and has a diversion point for diverting blood from the vessel into the conduit. The system further includes means for determining a flow rate of the diverted blood through the conduit. A first sensor in communication with the vessel generates at least one signal that is a function of a blood flow rate in the vessel downstream from the diversion point, wherein the downstream flow rate depends on the determined conduit flow rate and the performance of the vessel can be determined based on the signal. In addition, a processor can be provided in communication with the first sensor for determining a flow rate in the vessel upstream from the diversion point from the signal and the conduit flow rate.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 23, 2004
    Assignee: The Regents of the University of Michigan
    Inventors: William F. Weitzel, Jonathan M. Rubin, Joseph M. Messana
  • Publication number: 20030195413
    Abstract: An MRI system includes an ultrasonic detector system that includes an ultrasonic transducer placed to detect movement of selected anatomic structure in a patient. The transducer signal is analyzed to produce a gating signal which is used by the MRI system to trigger data acquisition.
    Type: Application
    Filed: May 19, 2003
    Publication date: October 16, 2003
    Inventors: Jonathan M. Rubin, Jeffrey B. Fowlkes, Charles R. Meyer
  • Publication number: 20030167030
    Abstract: A system and method are provided for determining the performance of a vessel, such as a hemodialysis access, which communicates blood between two locations of a patient. A conduit, such as an external dialysis circuit or an intravascular catheter, is provided in fluid communication with the vessel, and has a diversion point for diverting blood from the vessel into the conduit. The system further includes means for determining a flow rate of the diverted blood through the conduit. A first sensor in communication with the vessel generates at least one signal that is a function of a blood flow rate in the vessel downstream from the diversion point, wherein the downstream flow rate depends on the determined conduit flow rate and the performance of the vessel can be determined based on the signal. In addition, a processor can be provided in communication with the first sensor for determining a flow rate in the vessel upstream from the diversion point from the signal and the conduit flow rate.
    Type: Application
    Filed: February 21, 2003
    Publication date: September 4, 2003
    Applicant: The Regents of the University of Michigan
    Inventors: William F. Weitzel, Jonathan M. Rubin, Joseph M. Messana
  • Patent number: 6575927
    Abstract: A system and method are provided for determining the performance of a vessel, such as a hemodialysis access, which communicates blood between two locations of a patient. A conduit, such as an external dialysis circuit or an intravascular catheter, is provided in fluid communication with the vessel, and has a diversion point for diverting blood from the vessel into the conduit. The system further includes means for determining a flow rate of the diverted blood through the conduit. A first sensor in communication with the vessel generates at least one signal that is a function of a blood flow rate in the vessel downstream from the diversion point, wherein the downstream flow rate depends on the determined conduit flow rate and the performance of the vessel can be determined based on the signal. In addition, a processor can be provided in communication with the first sensor for determining a flow rate in the vessel upstream from the diversion point from the signal and the conduit flow rate.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: June 10, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: William F. Weitzel, Jonathan M. Rubin, Joseph M. Messana
  • Patent number: 6535835
    Abstract: The volume of fluid flow within a vessel (VE) is measured by an ultrasound system. Ultrasound waves backscattered from the fluid within the vessel generate data from which velocity values representing components of velocity (Vx and Vy) of the fluid flow in the scan plane (IP) are calculated. Grayscale data is correlated and the rate of decorrelation (D) of the data is calculated. The volume flow of the fluid (F) is estimated in response to the velocity signals and the rate of decorrelation (D).
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: March 18, 2003
    Assignees: GE Medical Systems Global Technology Company, LLC, The Regents of the University of Michigan
    Inventors: Jonathan M. Rubin, Jeffrey Brian Fowlkes, Theresa Ann Tuthill, Anne Lindsey Hall
  • Patent number: 6059727
    Abstract: A 3D image data set representing a volume of material such as human tissue is created using speckle decorrelation techniques to process successive 2D data slices from a moving, standard 1D or 1.5D ultrasound transducer. This permits the use of standard ultrasound machinery, without the use of additional slice-position hardware, to create 3D images without having to modify the machinery or its operation. Similar techniques can be used for special data processing within the imaging system as well to expedite the image acquisition process. Optionally, the image quality of 2D images can be enhanced through the use of multiple 3D data sets derived using the method.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: May 9, 2000
    Assignee: The Regents of the University of Michigan
    Inventors: J. Brian Fowlkes, Paul L. Carson, Aaron Moskalik, Jian-Feng Chen, Jonathan M. Rubin
  • Patent number: 5860929
    Abstract: A method for quantitatively estimating the amount of tissue that contains moving blood using power Doppler ultrasound. A region of interest is identified from a frozen image (i.e., a snapshot screen display created by displaying the last real-time image for a given scan). The region of interest is specified by using a pointing device (e.g., a mouse). An object that contains one hundred percent blood flow and is located at the same depth as the region of interest, but not necessarily inside the region of interest, is identified and the corresponding power noted and designated as the reference power level. The display is adjusted to show the one hundred percent blood flow vessel in a designated color (such as, for example, green) and all other power levels are normalized to the reference power level. The fractional blood volume is quantitatively estimated by summing the normalized Doppler power levels in a region of interest and dividing the sum by the number of pixels in region of interest.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: January 19, 1999
    Assignee: The Regents of the University of Michigan
    Inventors: Jonathan M. Rubin, Ronald S. Adler, J. Brian Fowlkes, Ray Steven Spratt