Patents by Inventor Jonathan Michael Buset

Jonathan Michael Buset has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250112724
    Abstract: A network element comprises a light source generating an optical signal having a USP with a USP bandwidth, an ASE source generating ASE noise, a WSS partitioning the ASE noise into a series of ASE passbands comprising a default bandwidth, an allocated start frequency, and an allocated end frequency, a processor and a memory storing instructions to: mark the ASE passband for deactivation or adjustment based on a comparison of spectral slices of the USP and spectral slices of each ASE passband such that for fully overlapping set of spectral slices the respective ASE is marked for deactivation and for partially overlapping sets of spectral slices, the respective ASE is marked for adjustment so long as a minimum slice threshold is met, otherwise the respective ASE is marked for deactivation; deactivate or adjust the ASE passbands based on their respective marking; and ramp the one or more user signal passband.
    Type: Application
    Filed: September 30, 2024
    Publication date: April 3, 2025
    Inventors: Jonathan Michael Buset, Nisar Ahmed, Sanjeev Ramachandran, Ashok Kunjidhapatham, Thomas Gerard, Francisco Javier Vaquero Caballero
  • Publication number: 20250112723
    Abstract: A network element comprises a light source generating an optical signal having a USP with a USP bandwidth, an ASE source generating ASE noise, a WSS partitioning the ASE noise into a series of ASE passbands comprising a default bandwidth, an allocated start frequency, and an allocated end frequency, a processor and a memory storing a band layout map having a current start frequency and a current end frequency for each ASE passband and comprising a unique deterministic layout of the ASE passbands, and instructions to: receive a USP operation; identify one or more ASE passbands impacted by the USP based on the band layout map and generate a bandwidth tracker comprising tracking attributes for the identified ASE passbands; adjust the tracking attributes for the identified ASE passbands based on the USP operation; and generate resize intent instructions for the identified ASE passbands based on the bandwidth tracker.
    Type: Application
    Filed: September 30, 2024
    Publication date: April 3, 2025
    Inventors: Ashok Kunjidhapatham, Sanjeev Ramachandran, Nisar Ahmed, Jonathan Michael Buset
  • Publication number: 20250113124
    Abstract: Methods and systems are herein disclosed, including a method comprising receiving an operation to execute, dividing the operation into first and second sub-operations, executing the first sub-operation in a first loading cycle, and executing the second sub-operation in a second loading cycle after the first loading cycle. The operation is either an activation or a deactivation of one or more signal passbands in an optical spectrum for transmission in a fiber optic line. Each of the one or more signal passbands contains one or more optical carriers carrying user data. The first sub-operation identifies one or more first sub-passbands. The second sub-operation identifies one or more second sub-passbands. The one or more first sub-passbands and the one or more second sub-passbands are each a portion of the one or more signal passbands.
    Type: Application
    Filed: September 30, 2024
    Publication date: April 3, 2025
    Inventors: Jonathan Michael Buset, Nisar Ahmed, Sanjeev Ramachandran, Ashok Kunjidhapatham, Thomas Gerard, Francisco Javier Vaquero Cabaliero
  • Publication number: 20250112722
    Abstract: A network element is disclosed herein. The network element comprises an ASE source generating ASE noise, a first WSS receiving a first optical signal comprising USPs having an expected power, a second WSS to attenuate ASE noise into ASE passbands and multiplexes the ASE passbands and the first optical signal into a second optical signal having second passbands, a spectral measurement device to detect optical power, and a controller having a processor and memory storing instructions causing the processor to: receive an optical power of the first optical signal from the spectral measurement device; detect a passband failure based on the optical power, the passband failure associated with a failed passband being one of: the USPs; generate the ASE passband; cause the second WSS to multiplex the ASE passband into the second optical signal; and cause the second WSS to activate the ASE passband to replace the failed passband.
    Type: Application
    Filed: September 30, 2024
    Publication date: April 3, 2025
    Inventors: Jonathan Michael Buset, Nisar Ahmed, Sanjeev Ramachandran, Ashok Kunjidhapatham, Thomas Gerard, Francisco Javier Vaquero Caballero
  • Publication number: 20250112695
    Abstract: Optical networks, network elements, and methods of use are described herein, including a network element comprising a processor; and a non-transitory computer readable memory storing instructions that, when executed by the processor, cause the processor to: receive, from a headend network element, instructions to collect a QoS baseline measurement indicative of performance of optical carrier(s) on a transmission line, collect the QoS baseline measurement; collect a QoS current measurement of the QoS data, after a first spectral loading operation is performed on the transmission line segment by the headend network element; determine that a numerical difference between the QoS current measurement and the QoS baseline measurement is outside of a predetermined threshold; and send instructions to the headend network element to abort a second spectral loading operation for the transmission line segment and to execute an AGC cycle to adjust amplifier operating conditions.
    Type: Application
    Filed: September 26, 2024
    Publication date: April 3, 2025
    Inventors: Jonathan Michael Buset, Thomas Gerard, Nisar Ahmed, Sanjeev Ramachandran, Ashok Kunjidhapatham
  • Publication number: 20230269020
    Abstract: A multiplexer module and method are herein disclosed. The multiplexer module comprises a WSS configured to receive a plurality of first optical signals, selectively multiplex the first optical signals into a second optical signal, and output the second optical signal; an OPM operable to determine a power of one or more slice within a sample optical signal, the sample optical signal being selected from a group consisting of a particular optical signal of the first optical signals and a portion of the second optical signal including the particular optical signal; a processor; and a memory storing instructions that cause the processor to: validate the particular optical signal using the power of one or more slice within the sample optical signal; and if the particular optical signal is valid, cause the WSS to open a particular passband so as to multiplex the particular optical signal into the second optical signal.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 24, 2023
    Inventors: Jonathan Michael Buset, Nisar Ahmed, Francisco Javier Vaquero Caballero, Thomas Gerard, Stephane St-Laurent
  • Patent number: 11245488
    Abstract: An apparatus is described. The apparatus comprises a downstream wavelength selective switch having an input port, an optical path operable to carry an optical signal, an optical source providing amplified spontaneous emission (ASE) light, an optical switch having a first input coupled to the optical path, a second input coupled to the optical source and receiving the ASE light, and an output coupled to the input port of the downstream wavelength selective switch. The optical switch couples either the first input or the second input to the output. Further included is a photodiode operable to monitor the optical signal, detect an optical loss of signal of the optical signal, and output a switch signal to the optical switch such that the optical switch couples the second input receiving the ASE light to the output whereby the ASE light is directed to the input port of the downstream wavelength selective switch.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 8, 2022
    Assignee: Infinera Corporation
    Inventors: Stephane St-Laurent, Jonathan Michael Buset, Biao Lu, Steve Sanders
  • Publication number: 20200336238
    Abstract: An apparatus is described. The apparatus comprises a downstream wavelength selective switch having an input port, an optical path operable to carry an optical signal, an optical source providing amplified spontaneous emission (ASE) light, an optical switch having a first input coupled to the optical path, a second input coupled to the optical source and receiving the ASE light, and an output coupled to the input port of the downstream wavelength selective switch. The optical switch couples either the first input or the second input to the output. Further included is a photodiode operable to monitor the optical signal, detect an optical loss of signal of the optical signal, and output a switch signal to the optical switch such that the optical switch couples the second input receiving the ASE light to the output whereby the ASE light is directed to the input port of the downstream wavelength selective switch.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 22, 2020
    Inventors: Stephane St-Laurent, Jonathan Michael Buset, Biao Lu, Steve Sanders