Patents by Inventor Jonathan Muller
Jonathan Muller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230079048Abstract: A manufacturing process includes: depositing a first catalyst on a first gas diffusion layer (GDL) to form a first catalyst-coated GDL; depositing a first ionomer on the first catalyst-coated GDL to form a first gas diffusion electrode (GDE); depositing a second catalyst on a second GDL to form a second catalyst-coated GDL; depositing a second ionomer on the second catalyst-coated GDL to form a second GDE; and laminating the first GDE with the second GDE and with an electrolyte membrane disposed between the first GDE and the second GDE to form a membrane electrode assembly (MEA). A MEA includes a first GDL; a second GDL; an electrolyte membrane disposed between the first GDL and the second GDL; a first catalyst layer disposed between the first GDL and the electrolyte membrane; and a second catalyst layer disposed between the second GDL and the electrolyte membrane, wherein a thickness of the electrolyte membrane is about 15 ?m or less.Type: ApplicationFiled: February 12, 2021Publication date: March 16, 2023Applicants: Board of Trustees of the Leland Stanford Junior University, Volkswagen AktiengesellschaftInventors: Friedrich B. Prinz, Timothy Goh, Shicheng Xu, Zhaoxuan Wang, Soonwook Hong, Yongmin Kim, Samuel Dull, Dong Un Lee, Thomas Francisco Jaramillo, Thomas Schladt, Gerold Huebner, Jonathan Müller, Glavas Vedran
-
Patent number: 11462744Abstract: A manufacturing process includes: depositing a first catalyst on a first gas diffusion layer (GDL) to form a first catalyst-coated GDL; depositing a first ionomer on the first catalyst-coated GDL to form a first gas diffusion electrode (GDE); depositing a second catalyst on a second GDL to form a second catalyst-coated GDL; depositing a second ionomer on the second catalyst-coated GDL to form a second GDE; and laminating the first GDE with the second GDE and with an electrolyte membrane disposed between the first GDE and the second GDE to form a membrane electrode assembly (MEA). A MEA includes a first GDL; a second GDL; an electrolyte membrane disposed between the first GDL and the second GDL; a first catalyst layer disposed between the first GDL and the electrolyte membrane; and a second catalyst layer disposed between the second GDL and the electrolyte membrane, wherein a thickness of the electrolyte membrane is about 15 ?m or less.Type: GrantFiled: February 14, 2020Date of Patent: October 4, 2022Assignees: The Board of Trustees of the Leland Stanford Junior University, Volkswagen AktiengesellschaftInventors: Friedrich B. Prinz, Timothy Goh, Shicheng Xu, Zhaoxuan Wang, Soonwook Hong, Yongmin Kim, Samuel Dull, Dong Un Lee, Thomas Francisco Jaramillo, Thomas Schladt, Gerold Huebner, Jonathan Müller, Glavas Vedran
-
Publication number: 20220136828Abstract: A peg for the use in a construction industry is disclosed. The peg may include: a main longitudinal body configured to be inserted into a solid surface, and an indicator. The indicator may be configured to adaptively present visual quantitative information related to at least one of: a tip of the peg and construction task instructions. The indicator may include a scale notches for marking height such that the scale notches may be marked on at least a portion of the main longitudinal body. The peg may further include a marker for adaptively marking the solid surface related information.Type: ApplicationFiled: February 13, 2020Publication date: May 5, 2022Applicant: CIVDRONE LTDInventors: Tom Jonathan YESHURUN, Liav Jonathan MULLER
-
Publication number: 20210257629Abstract: A manufacturing process includes: depositing a first catalyst on a first gas diffusion layer (GDL) to form a first catalyst-coated GDL; depositing a first ionomer on the first catalyst-coated GDL to form a first gas diffusion electrode (GDE); depositing a second catalyst on a second GDL to form a second catalyst-coated GDL; depositing a second ionomer on the second catalyst-coated GDL to form a second GDE; and laminating the first GDE with the second GDE and with an electrolyte membrane disposed between the first GDE and the second GDE to form a membrane electrode assembly (MEA). A MEA includes a first GDL; a second GDL; an electrolyte membrane disposed between the first GDL and the second GDL; a first catalyst layer disposed between the first GDL and the electrolyte membrane; and a second catalyst layer disposed between the second GDL and the electrolyte membrane, wherein a thickness of the electrolyte membrane is about 15 ?m or less.Type: ApplicationFiled: February 14, 2020Publication date: August 19, 2021Inventors: Friedrich B. Prinz, Timothy Goh, Shicheng Xu, Zhaoxuan Wang, Soonwook Hong, Yongmin Kim, Samuel Dull, Dong Un Lee, Thomas Francisco Jaramillo, Thomas Schladt, Gerold Huebner, Jonathan Muller, Glavas Vedran
-
Patent number: 8982994Abstract: Device comprising processing means (MT), transmission channels (VE1, . . . VEn), an antenna array for transmitting signals comprising a number of antennas (A11 . . . A1n) respectively associated with the transmission channels, a number of digital-analog converters (DAC) and a number of phase-shifting means (MD1, . . . MDn) respectively associated with the antennas, said phase-shifting means (MD1, . . . MDn) being placed between the processing means (MT) and the digital-analog converters (DAC) and including digital all-pass filters of FIR type (PT), the processing means comprising control means (MC) configured to adjust the coefficients and/or the order of the all-pass filters of FIR type.Type: GrantFiled: December 16, 2011Date of Patent: March 17, 2015Assignee: STMicroelectronics SAInventors: Mathieu Egot, Jonathan Muller, Andreia Cathelin, Didier Belot
-
Patent number: 8847811Abstract: Examples are provided for converting an analog signal to a digital output signal using serial-ripple analog-to-digital conversion (ADC). An ADC circuit may include conversion stages coupled in series. Each conversion stage may generate a bit for the digital output signal. A data latch may receive bits for the digital output signal from the conversion stages and to provide the digital output signal based on the bits. A conversion stage may include a comparator circuit and a multiplexer circuit. The comparator circuit may compare a sampled input signal with a reference signal and to generate the associated bit of the digital output signal based on a result of the comparison. The multiplexer circuit may provide an associated reference signal to a comparator circuit of a next conversion stage, where the next conversion stage is subsequent to the conversion stage.Type: GrantFiled: February 8, 2012Date of Patent: September 30, 2014Assignee: Semtech CorporationInventors: Ark-Chew Wong, Olivier Jacques Nys, Jonathan Muller
-
Publication number: 20130201043Abstract: Examples are provided for converting an analog signal to a digital output signal using serial-ripple analog-to-digital conversion (ADC). An ADC circuit may include conversion stages coupled in series. Each conversion stage may generate a bit for the digital output signal. A data latch may receive bits for the digital output signal from the conversion stages and to provide the digital output signal based on the bits. A conversion stage may include a comparator circuit and a multiplexer circuit. The comparator circuit may compare a sampled input signal with a reference signal and to generate the associated bit of the digital output signal based on a result of the comparison. The multiplexer circuit may provide an associated reference signal to a comparator circuit of a next conversion stage, where the next conversion stage is subsequent to the conversion stage.Type: ApplicationFiled: February 8, 2012Publication date: August 8, 2013Applicant: SEMTECH CORPORATIONInventors: Ark-Chew WONG, Olivier Jacques NYS, Jonathan MULLER
-
Patent number: 8487800Abstract: Examples of resistive digital-to-analog converter (RDAC) circuits are provided herein. RDAC circuits may provide an analog output signal derived from an n-bit digital input signal. In one example, an RDAC circuit may include a plurality of resistive circuit branches. Each resistive circuit branch may be arranged in a pull up/pull down network configuration. For example, an RDAC circuit may include a plurality of resistive circuit branches positioned in parallel. In an example, each of the plurality of resistive circuit branches may include a first inverter circuit, a second inverter circuit, and a resistive component. The RDAC circuit may include an output node for providing the analog output signal. Additionally, methods are provided for converting an analog output signal derived from an n-bit digital input signal.Type: GrantFiled: November 14, 2011Date of Patent: July 16, 2013Assignee: Semtech CorporationInventors: Ark-Chew Wong, Jonathan Muller
-
Publication number: 20130120176Abstract: Examples of resistive digital-to-analog converter (RDAC) circuits are provided herein. RDAC circuits may provide an analog output signal derived from an n-bit digital input signal. In one example, an RDAC circuit may include a plurality of resistive circuit branches. Each resistive circuit branch may be arranged in a pull up/pull down network configuration. For example, an RDAC circuit may include a plurality of resistive circuit branches positioned in parallel. In an example, each of the plurality of resistive circuit branches may include a first inverter circuit, a second inverter circuit, and a resistive component. The RDAC circuit may include an output node for providing the analog output signal. Additionally, methods are provided for converting an analog output signal derived from an n-bit digital input signal.Type: ApplicationFiled: November 14, 2011Publication date: May 16, 2013Applicant: Semtech CorporationInventors: Ark-Chew WONG, Jonathan Muller
-
Publication number: 20120163425Abstract: Device comprising processing means (MT), transmission channels (VE1, . . . VEn), an antenna array for transmitting signals comprising a number of antennas (A11 . . . A1n) respectively associated with the transmission channels, a number of digital-analogue converters (DAC) and a number of phase-shifting means (MD1, . . . MDn) respectively associated with the antennas, said phase-shifting means (MD1, . . . MDn) being placed between the processing means (MT) and the digital-analogue converters (DAC) and including digital all-pass filters of FIR type (PT), the processing means comprising control means (MC) configured to adjust the coefficients and/or the order of the all-pass filters of FIR type.Type: ApplicationFiled: December 16, 2011Publication date: June 28, 2012Applicant: STMicroelectronics SAInventors: Mathieu Egot, Jonathan Muller, Andreia Cathelin, Didier Belot