Patents by Inventor Jonathan O'Neil

Jonathan O'Neil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067939
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: July 12, 2023
    Publication date: February 29, 2024
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO
  • Patent number: 9755255
    Abstract: Fuel cell systems and related methods involving accumulators with multiple regions of differing water fill rates are provided. At least one accumulator region with a relatively more-rapid fill rate than another accumulator region is drained of water at shutdown under freezing conditions to allow at least that region to be free of water and ice. That region is then available to receive water from and supply water to, a fuel cell nominally upon start-up. The region having the relatively more-rapid fill rate may typically be of relatively lesser volume, and may be positioned either relatively below or relatively above the other region(s).
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: September 5, 2017
    Assignee: Audi AG
    Inventors: Robert M. Darling, Timothy W. Patterson, Jr., Michael L. Perry, Jonathan O'Neil
  • Publication number: 20150030946
    Abstract: Fuel cell systems and related methods involving accumulators with multiple regions of differing water fill rates are provided. At least one accumulator region with a relatively more-rapid fill rate than another accumulator region is drained of water at shutdown under freezing conditions to allow at least that region to be free of water and ice. That region is then available to receive water from and supply water to, a fuel cell nominally upon start-up. The region having the relatively more-rapid fill rate may typically be of relatively lesser volume, and may be positioned either relatively below or relatively above the other region(s).
    Type: Application
    Filed: October 10, 2014
    Publication date: January 29, 2015
    Inventors: Robert M. Darling, Timothy W. Patterson, JR., Michael L. Perry, Jonathan O'Neil
  • Publication number: 20110103763
    Abstract: The present invention is embodied in a system for synchronizing a mobile device with video output by a video output device. In one embodiment, the system comprises a data reader, a remote control, and a router. The data reader is configured to be connected to a video output device for reading digital codes associated with video or audio signals output by the video output device. The remote control has a user input mechanism and is configured to transmit an activation signal to the data reader after activation of the user input mechanism. The router is configured to be connected to a wide area network for transmitting data from the data reader to a remote data server. The router is also configured to establish a local data connection between the data reader and a mobile device.
    Type: Application
    Filed: April 2, 2010
    Publication date: May 5, 2011
    Applicant: Cosmo Research Company Limited
    Inventors: Hon Kwan Tse, Jonathan O'Neil Browne, Joseph Franklin Rifkin