Patents by Inventor Jonathan Pan

Jonathan Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230251104
    Abstract: This document describes methods by which a system determines a pickup/drop-off zone (PDZ) to which a vehicle will navigate to perform a ride service request. The system will access map data that includes the destination interval and define a geometric interval at the requested destination of the ride service request by: (i) using the vehicle's length and the road's speed limit at the destination to calculate a minimum allowable length for the interval; and (ii) setting start point and end point boundaries for the interval having an intervening distance that is equal to or greater than the minimum allowable length. The system will then generate a path to guide the vehicle to the interval.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventors: Jonathan Pan, Matthew L. Gilson, Shenglong Gao
  • Patent number: 11656093
    Abstract: This document describes methods by which a system determines a pickup/drop-off zone (PDZ) to which a vehicle will navigate to perform a ride service request. The system will define a PDZ that is a geometric interval that is within a lane of a road at the requested destination of the ride service request by: (i) accessing map data that includes the geometric interval; (ii) using the vehicle's length and the road's speed limit at the destination to calculate a minimum allowable length for the PDZ; (iii) setting, start point and end point boundaries for the PDZ having an intervening distance that is equal to or greater than the minimum allowable length; and (iv) positioning the PDZ in the lane at or within a threshold distance from the requested destination. The system will then generate a path to guide the vehicle to the PDZ.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: May 23, 2023
    Assignee: ARGO AI, LLC
    Inventors: Jonathan Pan, Matthew L. Gilson, Shenglong Gao
  • Publication number: 20230106268
    Abstract: Methods and systems that use a phantom vehicle to help generate a planned path for a real-world vehicle are described. The system will identify a starting point and a destination for a trip of the real-world vehicle. The system will select, from the data store of vehicle profiles, a phantom vehicle having an associated motion planning system that corresponds to a system that is deployed on the real-world vehicle. The system will use a high definition map to generate a planned route for the real-world vehicle from the starting point to the destination in the map. The system will run a simulation in which the phantom vehicle moves along the planned route in the map. The system will then output a record of the simulation to a user of the real world-vehicle or to a system of the real-world vehicle.
    Type: Application
    Filed: February 8, 2022
    Publication date: April 6, 2023
    Inventors: Shubhashree Venkatesh, Noe Brito, Yee-Ning Cheng, Madhav Chhura, Sebastian Dovenor, John Drake, Jonathan Pan, Jason Parraga, Scott Plant
  • Publication number: 20230105216
    Abstract: Methods and systems for generating a planned path for a vehicle are disclosed. Upon receiving a trip service request, a processor will access a data store containing multiple candidate motion planning systems, each of which is associated with at least one vehicle or fleet. The processor will identify a starting point and a destination for the trip service request, and it will use an identifier for the vehicle or its fleet to select, from the candidate systems, a motion planning system. The processor will use the functions of the selected motion planning system to generate candidate trajectories for the first vehicle from the starting point to the destination in a high definition map. The processor will select a planned route from the candidate trajectories, and it will output trip instructions to cause the vehicle to move along the planned route.
    Type: Application
    Filed: February 8, 2022
    Publication date: April 6, 2023
    Inventors: Shubhashree Venkatesh, Noe Brito, Yee-Ning Cheng, Madhav Chhura, Sebastian Dovenor, John Drake, Jonathan Pan, Jason Parraga, Scott Plant
  • Publication number: 20230104379
    Abstract: Methods and systems for estimating a time of arrival for a vehicle at a destination are disclosed. The system will access an adjacency graph comprising nodes and edges. Each node is associated with a unique location in a geographic area in which the vehicle is traveling. Each edge connects two of the nodes and is associated with an estimated travel time between the two connected nodes. The system will select, from the locations in adjacency graph, a first location that is near the vehicle and a second location that is near the destination. The location and destination are each associated with nodes in adjacency graph. The system will calculate a shortest path along the edges in the adjacency graph from the location and destination nodes, and it will calculate an estimated time of arrival for the vehicle as a function of the estimated travel times along the shortest path.
    Type: Application
    Filed: February 8, 2022
    Publication date: April 6, 2023
    Inventors: Shubhashree Venkatesh, Noe Brito, Yee-Ning Cheng, Madhav Chhura, Sebastian Dovenor, John Drake, Jonathan Pan, Jason Parraga, Scott Plant
  • Publication number: 20230105230
    Abstract: Methods and systems for obtaining serviceable areas for a robotic system in a metropolitan area are described. A computing device obtains information about places where (i) the system can route to and from in the area and/or (ii) the system can stop in the area. The computing device uses the information to generate clusters of places where the robotic system can route or stop in the metropolitan area. The computing device creates a geometric shape for each cluster, wherein each shape which has a boundary defined by outermost places contained in the cluster. The computing device uses the geometric shapes to define the serviceable areas for the robotic system within the metropolitan area. The computing device uses the serviceable areas to generate a map displaying at least one geographic area representing a portion of the metropolitan area where a concentrated number of the places exist.
    Type: Application
    Filed: February 8, 2022
    Publication date: April 6, 2023
    Inventors: Shubhashree Venkatesh, Noe Brito, Yee-Ning Cheng, Madhav Chhura, Sebastian Dovenor, John Drake, Jonathan Pan, Jason Parraga, Scott Plant
  • Publication number: 20230103981
    Abstract: Systems and methods for managing permissions and authorizing access to a service supported by a computing device. The methods comprise by a computing device: intercepting a request to access the service sent along with a certificate including a first tenant identifier (the first tenant identifier identifying a first business entity other than a second business entity providing the service); using the first tenant identifier to obtain permission information from a datastore (the permission information specifying which resources of a plurality of resources can be returned in response to requests from the first business entity); generating a web authentication token including the first tenant identifier and the permission information; and initiating operations of the service in response to a validation of the web authentication token.
    Type: Application
    Filed: February 8, 2022
    Publication date: April 6, 2023
    Inventors: Shubhashree Venkatesh, Noe Brito, Yee-Ning Cheng, Madhav Chhura, Sebastian Dovenor, John Drake, Jonathan Pan, Jason Parraga, Scott Plant
  • Publication number: 20230100961
    Abstract: This document describes methods by which a system determines a pickup/drop-off zone (PDZ) to which a vehicle will navigate to perform a ride service request. The system will define a PDZ that is a geometric interval that is within a lane of a road at the requested destination of the ride service request by: (i) accessing map data that includes the geometric interval; (ii) using the vehicle's length and the road's speed limit at the destination to calculate a minimum allowable length for the PDZ; (iii) setting, start point and end point boundaries for the PDZ having an intervening distance that is equal to or greater than the minimum allowable length; and (iv) positioning the PDZ in the lane at or within a threshold distance from the requested destination. The system will then generate a path to guide the vehicle to the PDZ.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Inventors: Jonathan Pan, Matthew L. Gilson, Shenglong Gao
  • Publication number: 20220349721
    Abstract: Methods and systems for enabling an autonomous vehicle (AV) to determine a path to a stopping location are disclosed. Upon receipt of a service request, the AV will determine a desired stop location (DSL) and state information for the service request. The AV using the DSL and the state information to define a pickup/drop-off interval that comprises an area of a road that includes the DSL. When approaching the pickup/drop-off interval, the AV will uses its perception system to determine whether an object is occluding the DSL. If no object is occluding the DSL, the AV will continue along the path toward the DSL. However, if an object is occluding the DSL, the AV will identify and move to a non-occluded alternate stop location (ASL) within the pickup/drop-off interval. The ASL must satisfy one or more permissible stopping location criteria.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 3, 2022
    Inventors: Ramadev Burigsay Hukkeri, Jay Sidhu, Mauro Della Penna, Jonathan Pan