Patents by Inventor Jonathan PEGAN

Jonathan PEGAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11864872
    Abstract: A method of estimating a continuous blood pressure waveform or a continuous blood pressure in a subject including: measuring an arterial blood pressure waveform or an arterial blood pressure with a sensor supported by a supporting structure comprising a polymeric substrate and connected to a processor and a transmitter, wherein the supporting structure is configured to press the sensor against a skin surface of a subject, wherein the sensor is configured to detect a biological metric of the subject, and wherein the processor is configured to quantify one or more signal(s) corresponding to the biological metric and the transmitter is configured to transmit the one or more signals to an external user system, and transforming the arterial blood pressure waveform or the arterial blood pressure to the continuous blood pressure waveform or the continuous blood pressure using a transfer function.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: January 9, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michelle Khine, Nicole Eckmann, Kimberly Veliz, Jonathan Pegan, Joshua Kim, Sun-Jun Park
  • Patent number: 11545265
    Abstract: A mobile medical device for monitoring a respiratory condition in a subject, the medical device including: a sensor configured to be adhered to the skin of a patient, the sensor configured to yield a resistance signal that is modulated by movements of a chest of a patient during respiration; a sensor attachment module configured to receive the signal from the sensor and to output data to a mobile electronic device an indication of an adverse respiratory event. Also disclosed is a server for integrating data collected from a plurality of the mobile medical devices and a crowd-sourced respiration advisory system including a plurality of the mobile medical devices and a server for integrating data collected by the mobile medical devices.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: January 3, 2023
    Inventors: Michelle Khine, Jonathan Pegan, Eugene Lee, Michael Chu, Francis Duhay, Mark Bachman, Joshua Kim, Sun-Jun Park
  • Patent number: 11207002
    Abstract: A wearable sensor apparatus is disclosed that includes a flexible substrate adapted to be coupled with a skin surface of an expectant mother. A conductor is disposed on the flexible substrate. The conductor can include micron-scale invaginations. The conductor can be capable of repeatable variation in resistance when subject to a strain. Also disclosed is a system for monitoring the health of a fetus in utero that includes a wearable sensor apparatus. The wearable sensor apparatus is configured to output a signal responsive to an electrical input. The system includes a computing system with one or more hardware processors. The computing system is programmed to implement a signal processing module configured to access the output signal from the wearable strain gauge and generate an output indicative of health of the baby in utero.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: December 28, 2021
    Inventors: Michelle Khine, Jonathan Pegan, Eugene Lee, Mark Bachman, Joshua Kim, Sun-Jun Park, Gareth Forde, Dorsey Ligon
  • Publication number: 20210161405
    Abstract: A method of estimating a continuous blood pressure waveform or a continuous blood pressure in a subject including: measuring an arterial blood pressure waveform or an arterial blood pressure with a sensor supported by a supporting structure comprising a polymeric substrate and connected to a processor and a transmitter, wherein the supporting structure is configured to press the sensor against a skin surface of a subject, wherein the sensor is configured to detect a biological metric of the subject, and wherein the processor is configured to quantify one or more signal(s) corresponding to the biological metric and the transmitter is configured to transmit the one or more signals to an external user system, and transforming the arterial blood pressure waveform or the arterial blood pressure to the continuous blood pressure waveform or the continuous blood pressure using a transfer function.
    Type: Application
    Filed: January 22, 2021
    Publication date: June 3, 2021
    Inventors: Michelle Khine, Nicole Eckmann, Kimberly Veliz, Jonathan Pegan, Joshua Kim, Sun-Jun Park
  • Patent number: 10898084
    Abstract: An apparatus comprising a wearable device comprising a supporting structure, a sensor and an electronics module, wherein the supporting structure is configured to press the sensor against a skin surface of a subject, wherein the sensor is configured to detect a biological metric of the subject, and wherein the electronics module is configured to quantify and/or transmit one or more signal(s) corresponding to the biological metric. Some aspects relate to a method of monitoring a biological metric in a subject comprising: adorning a subject with the wearable device; and detecting the biological metric over a period of time in the subject with the wearable device. Other aspects relate to a method of treating a disease in a subject comprising: monitoring a biological metric in the subject over a period of time, and treating the subject with a therapeutic protocol, and monitoring the biological metric in the subject to assess treatment efficacy.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: January 26, 2021
    Assignee: The Regents of the University of California
    Inventors: Michelle Khine, Nicole Eckmann, Kimberly Veliz, Jonathan Pegan, Joshua Kim, Sun-Jun Park
  • Patent number: 10634482
    Abstract: A method of making a sensor apparatus including placing a mask over a polymeric sheet, wherein the mask is configured to block regions of the polymeric sheet, depositing a conductive structure on the polymeric sheet at regions exposed through the mask, shrinking the polymeric sheet with conductive structure patterned on its surface by heating, and transferring the conductive structure to a flexible substrate.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: April 28, 2020
    Assignee: The Regents of the University of California
    Inventors: Jonathan Pegan, Michelle Khine, Mark Bachman, Joshua Kim, Sun-Jun Park
  • Publication number: 20190113326
    Abstract: A method of making a sensor apparatus including placing a mask over a polymeric sheet, wherein the mask is configured to block regions of the polymeric sheet, depositing a conductive structure on the polymeric sheet at regions exposed through the mask, shrinking the polymeric sheet with conductive structure patterned on its surface by heating, and transferring the conductive structure to a flexible substrate.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 18, 2019
    Inventors: Jonathan Pegan, Michelle Khine, Mark Bachman, Joshua Kim, Sun-Jun Park
  • Patent number: 10161737
    Abstract: A sensor apparatus including a flexible substrate and a wrinkled conductor disposed on the flexible substrate. In some embodiments, the conductor includes micro-scale invaginations. Also disclosed are methods of making a sensor apparatus, including: placing a mask over a polymeric sheet, wherein the mask is configured to block regions of the polymeric sheet, depositing a conductive structure on the polymeric sheet at regions exposed through the mask, shrinking the polymeric sheet with conductive structure patterned on its surface by heating, and transferring the conductive structure to a flexible substrate. Also disclosed are methods of sensing a health condition of a user or patient. The methods include coupling a sensor apparatus to a surface of a user or patient overlying structures to be monitored. The sensor apparatus may include a crumpled conductor capable of detecting strain.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: December 25, 2018
    Assignee: The Regents of the University of California
    Inventors: Jonathan Pegan, Michelle Khine, Mark Bachman, Joshua Kim, Sun-Jun Park
  • Publication number: 20180129786
    Abstract: A mobile medical device for monitoring a respiratory condition in a subject, the medical device including: a sensor configured to be adhered to the skin of a patient, the sensor configured to yield a resistance signal that is modulated by movements of a chest of a patient during respiration; a sensor attachment module configured to receive the signal from the sensor and to output data to a mobile electronic device an indication of an adverse respiratory event. Also disclosed is a server for integrating data collected from a plurality of the mobile medical devices and a crowd-sourced respiration advisory system including a plurality of the mobile medical devices and a server for integrating data collected by the mobile medical devices.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 10, 2018
    Inventors: Michelle Khine, Jonathan Pegan, Eugene Lee, Michael Chu, Francis Duhay
  • Publication number: 20180113123
    Abstract: A sensor including a flexible substrate, a conductor disposed on the flexible substrate, and a hydrophilic surface coating disposed on the conductor. The flexible substrate and the conductor form wrinkle as a result of the substrate being shrunk. The hydrophilic surface coating is disposed in, e.g., fills, the wrinkles or covers surface areas of the conductor within invaginations of the wrinkles. Also disclosed are methods of preparing the sensor and methods of detecting an amount of an analyte in an aqueous solution. Methods of detecting an amount of analyte can include contacting the sensor with an aqueous solution, and detecting an electrical signal with the sensor, wherein the electrical signal is indicative of the amount of the analyte.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 26, 2018
    Inventors: Michelle Khine, Jonathan Pegan, Jason Heikenfeld, Adam Hauke, Kevin Plaxco
  • Publication number: 20170281082
    Abstract: An apparatus comprising a wearable device comprising a supporting structure, a sensor and an electronics module, wherein the supporting structure is configured to press the sensor against a skin surface of a subject, wherein the sensor is configured to detect a biological metric of the subject, and wherein the electronics module is configured to quantify and/or transmit one or more signal(s) corresponding to the biological metric. Some aspects relate to a method of monitoring a biological metric in a subject comprising: adorning a subject with the wearable device; and detecting the biological metric over a period of time in the subject with the wearable device. Other aspects relate to a method of treating a disease in a subject comprising: monitoring a biological metric in the subject over a period of time, and treating the subject with a therapeutic protocol, and monitoring the biological metric in the subject to assess treatment efficacy.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Inventors: Michelle Khine, Nicole Eckmann, Kimberly Veliz, Jonathan Pegan, Joshua Kim, Sun-Jun Park
  • Publication number: 20170219331
    Abstract: A sensor apparatus including a flexible substrate and a wrinkled conductor disposed on the flexible substrate. In some embodiments, the conductor includes micro-scale invaginations. Also disclosed are methods of making a sensor apparatus, including: placing a mask over a polymeric sheet, wherein the mask is configured to block regions of the polymeric sheet, depositing a conductive structure on the polymeric sheet at regions exposed through the mask, shrinking the polymeric sheet with conductive structure patterned on its surface by heating, and transferring the conductive structure to a flexible substrate. Also disclosed are methods of sensing a health condition of a user or patient. The methods include coupling a sensor apparatus to a surface of a user or patient overlying structures to be monitored. The sensor apparatus may include a crumpled conductor capable of detecting strain.
    Type: Application
    Filed: May 18, 2015
    Publication date: August 3, 2017
    Inventors: Jonathan PEGAN, Michelle KHINE, Mark BACHMAN, Joshua KIM, Sun-Jun PARK
  • Publication number: 20170086709
    Abstract: A wearable sensor apparatus is disclosed that includes a flexible substrate adapted to be coupled with a skin surface of an expectant mother. A conductor is disposed on the flexible substrate. The conductor can include micron-scale invaginations. The conductor can be capable of repeatable variation in resistance when subject to a strain. Also disclosed is a system for monitoring the health of a fetus in utero that includes a wearable sensor apparatus. The wearable sensor apparatus is configured to output a signal responsive to an electrical input. The system includes a computing system with one or more hardware processors. The computing system is programmed to implement a signal processing module configured to access the output signal from the wearable strain gauge and generate an output indicative of health of the baby in utero.
    Type: Application
    Filed: May 18, 2015
    Publication date: March 30, 2017
    Inventors: Michelle KHINE, Jonathan PEGAN, Eugene LEE, Mark BACHMAN, Joshua KIM, Sun-Jun PARK, Gareth FORDE, Dorsey LIGON