Patents by Inventor Jonathan PILAULT

Jonathan PILAULT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12136037
    Abstract: There is provided a non-transitory storage medium and a system for generating an abstractive summary of a document using an abstractive machine learning algorithm (MLA). A document including a plurality of text sequences is received. An extractive summary of the document is generated, the extractive summary including a set of summary text sequences which is a subset of the plurality of text sequences. The abstractive MLA generates, based on the set of summary text sequences and at least a portion of the plurality of text sequences, an abstractive summary of the document including a set of abstractive text sequences, at least one abstractive text sequence not being included in the plurality of text sequences.
    Type: Grant
    Filed: July 19, 2023
    Date of Patent: November 5, 2024
    Assignee: ServiceNow Canada Inc.
    Inventors: Sandeep Subramanian, Raymond Li, Christopher Pal, Jonathan Pilault
  • Publication number: 20230394308
    Abstract: There is provided a non-transitory storage medium and a system for generating an abstractive summary of a document using an abstractive machine learning algorithm (MLA). A document including a plurality of text sequences is received. An extractive summary of the document is generated, the extractive summary including a set of summary text sequences which is a subset of the plurality of text sequences. The abstractive MLA generates, based on the set of summary text sequences and at least a portion of the plurality of text sequences, an abstractive summary of the document including a set of abstractive text sequences, at least one abstractive text sequence not being included in the plurality of text sequences.
    Type: Application
    Filed: July 19, 2023
    Publication date: December 7, 2023
    Applicant: ServiceNow Canada Inc.
    Inventors: Sandeep SUBRAMANIAN, Raymond LI, Christopher PAL, Jonathan PILAULT
  • Patent number: 11755909
    Abstract: There is provided a method and a system for training an extractive machine learning algorithm (MLA) to generate extractive summaries of text documents. Reference documents and associated extractive summaries are received. The extractive MLA is then trained to generate an extractive summary, where the training includes, for a given reference document, encoding, using a sentence encoder, a plurality of reference sentences to obtain an associated plurality of sentence representations, encoding, using a document encoder, the associated plurality of sentence representations to obtain a document representation, extracting, using a decoder and based on the associated plurality of sentence representations and the document representation, a first reference sentence of the plurality of reference sentences to obtain a first extracted sentence. A given parameter is updated based on the first extracted sentence and the given reference document summary.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: September 12, 2023
    Assignee: ServiceNow Canada Inc.
    Inventors: Sandeep Subramanian, Raymond Li, Christopher Pal, Jonathan Pilault
  • Publication number: 20220366251
    Abstract: There is provided a method and a system for training an extractive machine learning algorithm (MLA) to generate extractive summaries of text documents. Reference documents and associated extractive summaries are received. The extractive MLA is then trained to generate an extractive summary, where the training includes, for a given reference document, encoding, using a sentence encoder, a plurality of reference sentences to obtain an associated plurality of sentence representations, encoding, using a document encoder, the associated plurality of sentence representations to obtain a document representation, extracting, using a decoder and based on the associated plurality of sentence representations and the document representation, a first reference sentence of the plurality of reference sentences to obtain a first extracted sentence. A given parameter is updated based on the first extracted sentence and the given reference document summary.
    Type: Application
    Filed: June 7, 2022
    Publication date: November 17, 2022
    Applicant: ServiceNow Canada Inc.
    Inventors: Sandeep SUBRAMANIAN, Raymond LI, Christopher PAL, Jonathan PILAULT
  • Patent number: 11397892
    Abstract: A method and a system for generating an abstractive summary of a document using an abstractive machine learning algorithm (MLA) and a method and a system for training the abstractive MLA. A document including a plurality of text sequences is received. An extractive summary of the document is generated, the extractive summary including a set of summary text sequences which is a subset of the plurality of text sequences. The abstractive MLA generates, based on the set of summary text sequences and at least a portion of the plurality of text sequences, an abstractive summary of the document including a set of abstractive text sequences, at least one abstractive text sequence not being included in the plurality of text sequences. In some aspects, the extractive summary is generated by an extractive MLA having been trained to generate extractive summaries.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: July 26, 2022
    Assignee: SERVICENOW CANADA INC.
    Inventors: Sandeep Subramanian, Raymond Li, Jonathan Pilault, Christophe Pal
  • Publication number: 20210365773
    Abstract: A method and a system for generating an abstractive summary of a document using an abstractive machine learning algorithm (MLA) and a method and a system for training the abstractive MLA. A document including a plurality of text sequences is received. An extractive summary of the document is generated, the extractive summary including a set of summary text sequences which is a subset of the plurality of text sequences. The abstractive MLA generates, based on the set of summary text sequences and at least a portion of the plurality of text sequences, an abstractive summary of the document including a set of abstractive text sequences, at least one abstractive text sequence not being included in the plurality of text sequences. In some aspects, the extractive summary is generated by an extractive MLA having been trained to generate extractive summaries.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Applicant: Element AI Inc.
    Inventors: Sandeep SUBRAMANIAN, Raymond LI, Jonathan PILAULT, Christophe PAL