Patents by Inventor Jonathan Posner

Jonathan Posner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220307066
    Abstract: The disclosure addresses methods, compositions, and kits used to detect or quantify polymerase inhibitors in biological samples. The polymerase inhibitors can be therapeutic agents, or metabolites thereof, that have been administered to a subject as part of, for example, antiretroviral therapy (ART) or pre-exposure prophylaxis (PrEP) to address potential infections by, e.g., retroviruses such as HIV and other viruses reliant on reverse transcription. These methods, compositions, and kits can be applied to monitor a subject's compliance with the indicated therapies and can inform potential adjustments to the therapies.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 29, 2022
    Applicants: University of Washington, The General Hospital Corporation
    Inventors: Ayokunle Olanrewaju, Paul Drain, Jonathan Posner, Derin Sevenler, Benjamin Sullivan, Andrew Bender, Jane Zhang, Rebecca Sandlin
  • Patent number: 11199460
    Abstract: An example sensor device is provided. The sensor device includes (a) a substrate having a first end and a second end, wherein the substrate includes a contact portion, a first sensor portion positioned between the first end of the substrate and the contact portion, and a second sensor portion positioned between the second end of the substrate and the contact portion, (b) a first strain gauge sensor positioned at the first sensor portion, and (c) a second strain gauge sensor positioned at the second sensor portion, wherein the first end of the substrate and the second end of the substrate are configured to be coupled to a rigid curved surface, and wherein the sensor device is configured such that a force applied to the contact portion of the substrate will be sensed by each of the first strain gauge sensor and the second strain gauge sensor.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: December 14, 2021
    Assignees: University of Washington, The Regents of the University of California
    Inventors: Jianzhu Yin, Jonathan Posner, Veronica J. Santos
  • Publication number: 20200049580
    Abstract: An example sensor device is provided. The sensor device includes (a) a substrate having a first end and a second end, wherein the substrate includes a contact portion, a first sensor portion positioned between the first end of the substrate and the contact portion, and a second sensor portion positioned between the second end of the substrate and the contact portion, (b) a first strain gauge sensor positioned at the first sensor portion, and (c) a second strain gauge sensor positioned at the second sensor portion, wherein the first end of the substrate and the second end of the substrate are configured to be coupled to a rigid curved surface, and wherein the sensor device is configured such that a force applied to the contact portion of the substrate will be sensed by each of the first strain gauge sensor and the second strain gauge sensor.
    Type: Application
    Filed: March 21, 2018
    Publication date: February 13, 2020
    Inventors: Jianzhu Yin, Jonathan Posner, Veronica J. Santos
  • Publication number: 20180169365
    Abstract: An intubating neonatal laryngeal mask airway includes an elongated body having a palate side and a lingual side. A cuff is coupled to an elongated body opposite a distal end of the elongated body. The cuff includes a concavity positioned opposite the palate side of the elongated body and between a guide sleeve and an esophageal plug. At least one ventilation lumen traverses the elongated body from the distal end to the cuff. The at least one ventilation lumen is in fluid communication with at least one ventilation port. A guide channel is longitudinally positioned on the lingual side of the elongated body. The guide channel is operatively aligned to a guide sleeve. An imaging device port is positioned within the concavity.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 21, 2018
    Inventors: Taylor Sawyer, Jonathan Posner, Stefan Foulstone, Sarah Owen, Neusha Farahani, Mark Trupiano
  • Publication number: 20170184543
    Abstract: The present disclosure relates to devices and methods for performing isotachophoretic concentration of analytes using a porous matrix, for example, for use in diagnostic assays such as lateral flow assays. For example, the disclosure provides a method of concentrating an analyte in a sample. The method includes providing a device comprising a porous matrix having a first fluid pathway having a first end and extending to a second end, a first electrode, and a second electrode; introducing to the first pathway a first fluid comprising a trailing electrolyte, a second fluid comprising a leading electrolyte and the analyte; and applying a voltage across the first electrode and the second electrode for a time sufficient to provide an ITP plug. As described herein, the devices and methods described herein can be used in conjunction with lateral flow assay techniques to detect and quantify a variety of biochemical and biological analytes, such as nucleic acids, proteins, cells and metabolites.
    Type: Application
    Filed: April 15, 2015
    Publication date: June 29, 2017
    Inventors: Jonathan POSNER, Babak MOGHADAM, Kelly CONNELLY
  • Patent number: 9239346
    Abstract: Systems for providing electro-mechanical sensors are provided. In some embodiments, a system for providing an electro-mechanical sensor comprising: a flexible material forming at least a first channel and a second channel, wherein the first channel includes a first plate region and the second channel forms a second plate region that is substantially aligned with the first plate region; and an electrically conductive fluid that fills the first channel and the second channel.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: January 19, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Veronica J. Santos, Jonathan Posner, Ruben Ponce Wong
  • Publication number: 20160002416
    Abstract: This disclosure describes polymeric devices including a polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene having a styrene content of between 15 wt % and 70 wt %. The polymeric devices include a predetermined structural feature having a dimension of 20 nm to 1 cm. The polymeric devices can have a surface and a bulk volume, and the styrene content of the surface can differ from the styrene content of the bulk volume of the polymeric devices.
    Type: Application
    Filed: January 15, 2014
    Publication date: January 7, 2016
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Jonathan Posner, Mark Borysiak
  • Patent number: 8753584
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: June 17, 2014
    Assignees: Illumina, Inc., The Arizona Board of Regents for and on behalf of Arizona State Univeristy
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Publication number: 20140080205
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicants: THE ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY, ILLUMINA, INC.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Patent number: 8597594
    Abstract: An apparatus for fragmenting nucleic acid. The apparatus includes a sample reservoir that comprises a fluid having nucleic acids. The apparatus can also include a shear wall that is positioned within the sample reservoir. The shear wall includes a porous core medium that has pores that are sized to permit nucleic acids to flow therethrough. The apparatus also includes first and second chambers that are separated by the shear wall. The first and second chambers are in fluid communication with each other through the porous core medium of the shear wall. Also, the apparatus may include first and second electrodes that are located within the first and second chambers, respectively. The first and second electrodes are configured to generate an electric field that induces a flow of the sample fluid. The nucleic acids move through the shear wall thereby fragmenting the nucleic acids.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: December 3, 2013
    Assignee: Illumina, Inc.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Publication number: 20120292190
    Abstract: An apparatus for fragmenting nucleic acid. The apparatus includes a sample reservoir that comprises a fluid having nucleic acids. The apparatus can also include a shear wall that is positioned within the sample reservoir. The shear wall includes a porous core medium that has pores that are sized to permit nucleic acids to flow therethrough. The apparatus also includes first and second chambers that are separated by the shear wall. The first and second chambers are in fluid communication with each other through the porous core medium of the shear wall. Also, the apparatus may include first and second electrodes that are located within the first and second chambers, respectively. The first and second electrodes are configured to generate an electric field that induces a flow of the sample fluid. The nucleic acids move through the shear wall thereby fragmenting the nucleic acids.
    Type: Application
    Filed: July 18, 2012
    Publication date: November 22, 2012
    Applicants: THE ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY, ILLUMINA, INC.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Patent number: 8252250
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 28, 2012
    Assignees: Illumina, Inc., The Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Patent number: 7799453
    Abstract: Water flooding at the cathode of a fuel cell is a common problem in fuel cells. By integrating an electroosmotic (EO) pump to remove product water from the cathode area, fuel cell power can be increased. Integration of EO pumps transforms the designs of air channel and air breathing cathodes, reducing air pumping power loads and increasing oxidant transport. Hydration of gas streams, management of liquid reactants, and oxidant delivery can also be accomplished with integrated electroosmotic pumps. Electroosmotic pumps have no moving parts, can be integrated as a layer of the fuel cell, and scale with centimeter to micron scale fuel cells.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: September 21, 2010
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd.
    Inventors: Juan Santiago, Jonathan Posner, Friedrich B. Prinz, Tibor Fabian, John Eaton, Suk-Won Cha, Cullen Buie, Daejoogn Kim, Hideaki Tsuru, Jun Sasahara, Tadahiro Kubota, Yuji Saito
  • Publication number: 20100187115
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Application
    Filed: November 25, 2009
    Publication date: July 29, 2010
    Applicant: ILLUMINA CORPORATION
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Publication number: 20100112391
    Abstract: A method for generating electrical current using a fuel cell includes flowing a first flow that includes a fuel and an electrolyte through a first channel. The fuel is oxidized at an anode to generate electrons for conduction to a load and oxidation products that remain in the first flow. The method includes flowing a second flow that includes an oxidizer and an electrolyte through a second channel that is open to the first channel. A cathode receives electrons from the load and the oxidation products, and the oxidizer is reduced to form reduction products and complete an electrochemical circuit. The plurality of exchange zones are positioned and the flows are oriented within their respective first and second channels such that the first and second flows contact one another intermittently at the exchange zones to enable transport of the reduction and oxidation products to the anode and cathode.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 6, 2010
    Applicant: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Kamil SALLOUM, Jonathan Posner
  • Publication number: 20070009366
    Abstract: An “in-plane” electroosmotic pump may reduce deterioration of performance due to electrolytic gas generation. By controlling the flow of gas generated at the electrodes, while allowing ionic current, the gas may be prevented from fouling the narrow slots which act as pumping channels.
    Type: Application
    Filed: June 28, 2005
    Publication date: January 11, 2007
    Inventors: Alan Myers, Juan Santiago, Shuhuai Yao, Jonathan Posner
  • Publication number: 20060254913
    Abstract: According to some embodiments, a method, system, and apparatus for providing an orientation independent electroosmotic pump. In some embodiments, the method includes an anode and a cathode at different electrical potentials, the anode and cathode are each sealed in an ion-exchange membrane and at least partially immersed in an electrolyte contained in a reservoir of an electroosmotic pump, collecting gases generated by electrolytic decomposition of the electrolyte within a space defined by the ion-exchange membranes that seal the anode and cathode, recombining the collected gases to produce a liquid using a catalyst, the catalyst being located outside of the reservoir, and introducing the produced liquid into the fluid reservoir through an osmotic membrane.
    Type: Application
    Filed: May 10, 2005
    Publication date: November 16, 2006
    Inventors: Alan Myers, Juan Santiago, Shuhuai Yao, Jonathan Posner
  • Publication number: 20060029851
    Abstract: Water flooding at the cathode of a fuel cell is a common problem in fuel cells. By integrating an electroosmotic (EO) pump to remove product water from the cathode area, fuel cell power can be increased. Integration of EO pumps transforms the designs of air channel and air breathing cathodes, reducing air pumping power loads and increasing oxidant transport. Hydration of gas streams, management of liquid reactants, and oxidant delivery can also be accomplished with integrated electroosmotic pumps. Electroosmotic pumps have no moving parts, can be integrated as a layer of the fuel cell, and scale with centimeter to micron scale fuel cells.
    Type: Application
    Filed: August 4, 2004
    Publication date: February 9, 2006
    Inventors: Juan Santiago, Jonathan Posner, Friedrich Prinz, Tibor Fabian, John Eaton, Suk-Won Cha, Cullen Buie, Daejoogn Kim, Hideaki Tsuru, Jun Sasahara, Tadahiro Kubota, Yuji Saito