Patents by Inventor Jonathan R. Freedman

Jonathan R. Freedman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210008771
    Abstract: A method of over-molding materials includes: providing a first material in a groove in a first portion of a mold such that only a single surface of the first material is exposed to a vacant portion of the mold; providing, via an injection molding process, a second material in a liquid form in the vacant portion of the mold adjacent to, and in engagement with, the first material; and allowing the second material to solidify and become directly coupled to the first material, thus forming a single component. During the method, the entire single surface of the first material is flush with a plane defined by outer surface of the first portion of the mold. The second material has one or both of a greater hardness when solidified than the first material and/or a higher melting temperature than the first material.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 14, 2021
    Inventors: Donald Huber, Jonathan R. Freedman, Brian Tifft, Franklin Lee Lucas, JR.
  • Publication number: 20200398547
    Abstract: Disclosed are an entrained polymer or an entrained polymer composition, and a method for forming and adhering an entrained polymer structure to a substrate using the entrained polymer or an entrained polymer composition. The method includes providing a substrate configured to receive application of a molten entrained polymer. A particulate entrained polymer in molten form is applied in a predetermined shape, to a surface of the substrate, to form a solidified entrained polymer structure on the substrate. The entrained polymer includes a monolithic material formed of at least a base polymer and a particulate active agent. The surface of the substrate is compatible with the molten entrained polymer so as to thermally bond with it. In this way, the entrained polymer bonds to the substrate and solidifies upon sufficient cooling of the entrained polymer.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Inventors: Gary Peters, Jonathan R. Freedman, Franklin Lee Lucas, JR.
  • Publication number: 20200352160
    Abstract: Disclosed are antimicrobial releasing agents, methods of preparing the antimicrobial releasing agents, and entrained polymers containing antimicrobial releasing agents. The antimicrobial releasing agent is prepared with an acidified hydrophilic material with a pH below 3.5 as a carrier, an active compound, and a trigger. The entrained polymer of the invention releases an antimicrobial agent in gas form, such as ClO2, optionally over a range of concentration from 150 ppm to 1800 ppm per gram of the entrained polymer under certain tested conditions.
    Type: Application
    Filed: November 12, 2019
    Publication date: November 12, 2020
    Inventors: Jason Pratt, Jonathan R. Freedman, Deepti S. Gupta, Michael A. Johnston, John Belfance, William Frederick Spano
  • Publication number: 20200270025
    Abstract: A method for providing a passivation layer or pH protective coating on a substrate surface by PECVD is provided, the method comprising generating a plasma from a gaseous reactant comprising polymerizing gases. The lubricity, passivation, pH protective, hydrophobicity, and/or barrier properties of the passivation layer or pH protective coating are set by setting the ratio of the O2 to the organosilicon precursor in the precursor feed, and/or by setting the electric power used for generating the plasma. In particular, a passivation layer or pH protective coating made by the method is provided. Pharmaceutical packages coated by the method and the use of such packages protecting composition contained in the vessel against mechanical and/or chemical effects of the surface of the package without a passivation layer or pH protective coating material are also provided.
    Type: Application
    Filed: March 2, 2020
    Publication date: August 27, 2020
    Inventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Jonathan R. Freedman, Robert J. Pangborn, Peter J. Sagona, Christopher Weikart
  • Publication number: 20200255173
    Abstract: Methods are provided for storing and preserving comestible finfish material, preferably so as to extend shelf life of the same. In one optional method, comestible finfish material is placed in a product containing space of a storage container atop a platform of a support structure. The storage container includes an internal compartment having the product containing space. The support structure defines the platform for supporting the comestible finfish material. The internal compartment further includes a reservoir, configured to retain liquid, below the platform. The platform and/or support structure are configured to direct liquid exuded from the comestible finfish material to the reservoir. Optionally, the reservoir comprises an absorbent material for absorbing liquid in the reservoir.
    Type: Application
    Filed: December 20, 2019
    Publication date: August 13, 2020
    Inventors: Derek Riley, Michael Johnston, Neal Watson, John Belfance, Jonathan R. Freedman, Deepti S. Gupta, Franklin Lee Lucas, JR., Jason Pratt, Kathryn Gustafson, G.F. Alexia Foutch, Ethan Ross Perdue, James S. Hollinger
  • Publication number: 20200255206
    Abstract: A method for storing and preserving moisture sensitive products includes providing a moisture tight container (400) having an insert (300) made from a desiccant entrained polymer that is less than 3.25 g in mass, disposing a plurality of moisture sensitive products into the interior compartment when the container is in the open position, and moving the container into the closed position, thereby creating a moisture tight seal between the lid (420) and the container body (401). The container provides a shelf life to the moisture sensitive products of at least 12 months. The container, when in the closed position, has a moisture vapor transmission rate, at ambient conditions of 30° C. and 75% relative humidity (RH), of less than 500|ig/day.
    Type: Application
    Filed: August 8, 2018
    Publication date: August 13, 2020
    Inventors: Jonathan R. Freedman, Donald Lee Huber, Brian Tifft, Franklin Lee Lucas, JR.
  • Publication number: 20200231343
    Abstract: A moisture tight container (100, 300) includes a container body (101, 301) and a lid (101, 120, 320) preferably linked to the body (101, 301) by a hinge (140, 340). The body (101, 301) and lid (101, 120, 320) include at least a first seal (462) and a second seal (464) in series to provide a moisture tight seal (460) between the body (101, 301) and the lid (101, 120, 320). The first seal (462) includes mating of thermoplastic-to-thermoplastic sealing surfaces of the body (101, 301) and lid (101, 120, 320) respectively. The second seal (464) includes mating of thermoplastic-to-elastomeric sealing surfaces of the body (101, 301) and lid (101, 120, 320), respectively, or of the lid (101, 120, 320) and body (101, 301), respectively.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 23, 2020
    Inventors: Jonathan R. Freedman, Donald Lee Huber, Brian Tifft, Franklin Lee Lucas, JR.
  • Publication number: 20200207533
    Abstract: Methods are provided for storing and preserving comestible mollusk material, preferably so as to extend shelf life of the same. In one optional method, comestible mollusk material is placed in a product containing space of a storage container atop a platform of a support structure. The storage container includes an internal compartment having the product containing space. The support structure defines the platform for supporting the comestible mollusk material. The internal compartment further includes a reservoir, configured to retain liquid, below the platform. The platform and/or support structure are configured to direct liquid exuded from the comestible mollusk material to the reservoir. Optionally, the reservoir comprises an absorbent material for absorbing liquid in the reservoir.
    Type: Application
    Filed: December 18, 2019
    Publication date: July 2, 2020
    Inventors: Derek Riley, Michael Johnston, Neal Watson, John Belfance, Jonathan R. Freedman, Deepti S. Gupta, Franklin Lee Lucas, JR., Jason Pratt, Kathryn Gustafson, G.F. Alexia Foutch, Ethan Ross Perdue, James S. Hollinger
  • Patent number: 10669079
    Abstract: A moisture tight container (100, 300) includes a container body (101, 301) and a lid (101, 120, 320) preferably linked to the body (101, 301) by a hinge (140, 340). The body (101, 301) and lid (101, 120, 320) include at least a first seal (462) and a second seal (464) in series to provide a moisture tight seal (460) between the body (101, 301) and the lid (101, 120, 320). The first seal (462) includes mating of thermoplastic-to-thermoplastic sealing surfaces of the body (101, 301) and lid (101, 120, 320) respectively. The second seal (464) includes mating of thermoplastic-to-elastomeric sealing surfaces of the body (101, 301) and lid (101, 120, 320), respectively, or of the lid (101, 120, 320) and body (101, 301), respectively.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: June 2, 2020
    Assignee: CSP Technologies, Inc.
    Inventors: Jonathan R. Freedman, Donald Lee Huber, Brian Tifft, Franklin Lee Lucas, Jr.
  • Publication number: 20200070392
    Abstract: A method of over-molding materials includes: providing a first material in a groove in a first portion of a mold such that only a single surface of the first material is exposed to a vacant portion of the mold; providing, via an injection molding process, a second material in a liquid form in the vacant portion of the mold adjacent to, and in engagement with, the first material; and allowing the second material to solidify and become directly coupled to the first material, thus forming a single component. The second material has one or both of a greater hardness when solidified than the first material and/or a higher melting temperature than the first material.
    Type: Application
    Filed: March 30, 2018
    Publication date: March 5, 2020
    Applicant: CSP TECHNOLOGIES, INC.
    Inventors: Donald Huber, Jonathan R. Freedman, Brian Tifft, Franklin Lee Lucas, Jr.
  • Patent number: 10577154
    Abstract: A method for providing a passivation layer or pH protective coating on a substrate surface by PECVD is provided, the method comprising generating a plasma from a gaseous reactant comprising polymerizing gases. The lubricity, passivation, pH protective, hydrophobicity, and/or barrier properties of the passivation layer or pH protective coating are set by setting the ratio of the O2 to the organosilicon precursor in the precursor feed, and/or by setting the electric power used for generating the plasma. In particular, a passivation layer or pH protective coating made by the method is provided. Pharmaceutical packages coated by the method and the use of such packages protecting composition contained in the vessel against mechanical and/or chemical effects of the surface of the package without a passivation layer or pH protective coating material are also provided.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: March 3, 2020
    Assignee: SIO2 MEDICAL PRODUCTS, INC.
    Inventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Jonathan R. Freedman, Robert J. Pangborn, Peter J. Sagona, Christopher Weikart
  • Patent number: 10537273
    Abstract: Methods for processing a vessel, for example to provide a gas barrier or lubricity, are disclosed. First and second PECVD or other vessel processing stations or devices and a vessel holder comprising a vessel port are provided. An opening of the vessel can be seated on the vessel port. The interior surface of the seated vessel can be processed via the vessel port by the first and second processing stations or devices. Vessel barrier and lubricity coatings and coated vessels, for example syringes and medical sample collection tubes are disclosed. A vessel processing system is also disclosed.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: January 21, 2020
    Assignee: SIO2 MEDICAL PRODUCTS, INC.
    Inventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Jonathan R. Freedman, Robert J. Pangborn, Peter J. Sagona
  • Publication number: 20200001512
    Abstract: Disclosed are methods for forming and adhering an entrained polymer structure to a substrate. The methods include providing a substrate (114) configured to receive application of a molten entrained polymer (118). A mineral entrained polymer in molten form is applied in a predetermined shape, to a surface of the substrate, to form a solidified entrained polymer structure on the substrate. The entrained polymer includes a monolithic material formed of at least a base polymer (25) and a mineral active agent (30) to absorb excess moisture. The surface of the substrate is compatible with the molten entrained polymer so as to thermally bond with it. In this way, the entrained polymer bonds to the substrate and solidifies upon sufficient cooling of the entrained polymer. The polymer can have a channeling or foaming agent (35), eg polyglycol.
    Type: Application
    Filed: March 5, 2018
    Publication date: January 2, 2020
    Inventors: Gary Peters, Jonathan R. Freedman, Franklin Lee Lucas, JR.
  • Publication number: 20190352778
    Abstract: A syringe or other vessel having a substrate surface coated by PECVD is provided. The PECVD coating is made by generating plasma from a gaseous reactant comprising an organosilicon precursor and optionally O2. The lubricity, hydrophobicity and/or barrier properties of the coating are set by setting the ratio of the O2 to the organosilicon precursor in the gaseous reactant, and/or by setting the electric power used for generating the plasma. In particular, a lubricity coating made by said method is provided. Vessels coated by said method and the use of such vessels protecting a compound or composition contained or received in said coated vessel against mechanical and/or chemical effects of the surface of the uncoated vessel material are also provided.
    Type: Application
    Filed: July 22, 2019
    Publication date: November 21, 2019
    Inventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Jonathan R. Freedman, Robert J. Pangborn, Peter J. Sagona
  • Publication number: 20190335746
    Abstract: A system and method are disclosed for inhibiting or preventing the growth of microbes and/or for killing microbes in a closed package or container in which a good (optionally a food product) is held or stored. The system and method optionally include use of an entrained polymer article, preferably a film that includes an antimicrobial releasing agent and channeling agent.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 7, 2019
    Inventors: Jonathan R. FREEDMAN, Deepti S. GUPTA, Michael A. JOHNSTON, John BELFANCE, Jason PRATT, William Frederick SPANO
  • Publication number: 20190328299
    Abstract: Methods for processing a vessel, for example to provide a gas barrier or lubricity, are disclosed. First and second PECVD or other vessel processing stations or devices and a vessel holder comprising a vessel port are provided. An opening of the vessel can be seated on the vessel port. The interior surface of the seated vessel can be processed via the vessel port by the first and second processing stations or devices. Vessel barrier and lubricity coatings and coated vessels, for example syringes and medical sample collection tubes are disclosed. A vessel processing system is also disclosed.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Jonathan R. Freedman, Robert J. Pangborn, Peter J. Sagona
  • Publication number: 20190276218
    Abstract: A system and method are disclosed for inhibiting or preventing the growth of microbes and/or for killing microbes in a closed package or container in which a good (optionally a food product) is held or stored. The system and method optionally include use of an entrained polymer article, preferably a film, that includes an antimicrobial releasing agent.
    Type: Application
    Filed: November 13, 2017
    Publication date: September 12, 2019
    Inventors: Jonathan R. FREEDMAN, Deepti S. GUPTA, Michael A. JOHNSTON, John BELFANCE
  • Patent number: 10390744
    Abstract: Methods for processing a vessel, for example to provide a gas barrier or lubricity, are disclosed. First and second PECVD or other vessel processing stations or devices and a vessel holder comprising a vessel port are provided. An opening of the vessel can be seated on the vessel port. The interior surface of the seated vessel can be processed via the vessel port by the first and second processing stations or devices. Vessel barrier and lubricity coatings and coated vessels, for example syringes and medical sample collection tubes are disclosed. A vessel processing system is also disclosed.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: August 27, 2019
    Assignee: SiO2 Medical Products, Inc.
    Inventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Jonathan R. Freedman, Robert J. Pangborn, Peter J. Sagona
  • Publication number: 20190233167
    Abstract: A method for providing a passivation layer or pH protective coating on a substrate surface by PECVD is provided, the method comprising generating a plasma from a gaseous reactant comprising polymerizing gases. The lubricity, passivation, pH protective, hydrophobicity, and/or barrier properties of the passivation layer or pH protective coating are set by setting the ratio of the O2 to the organosilicon precursor in the precursor feed, and/or by setting the electric power used for generating the plasma. In particular, a passivation layer or pH protective coating made by the method is provided. Pharmaceutical packages coated by the method and the use of such packages protecting composition contained in the vessel against mechanical and/or chemical effects of the surface of the package without a passivation layer or pH protective coating material are also provided.
    Type: Application
    Filed: December 19, 2018
    Publication date: August 1, 2019
    Inventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Jonathan R. Freedman, Robert J. Pangborn, Peter J. Sagona, Christopher Weikart
  • Publication number: 20190092536
    Abstract: A moisture tight container (100, 300) includes a container body (101, 301) and a lid (101, 120, 320) preferably linked to the body (101, 301) by a hinge (140, 340). The body (101, 301) and lid (101, 120, 320) include at least a first seal (462) and a second seal (464) in series to provide a moisture tight seal (460) between the body (101, 301) and the lid (101, 120, 320). The first seal (462) includes mating of thermoplastic-to-thermoplastic sealing surfaces of the body (101, 301) and lid (101, 120, 320) respectively. The second seal (464) includes mating of thermoplastic-to-elastomeric sealing surfaces of the body (101, 301) and lid (101, 120, 320), respectively, or of the lid (101, 120, 320) and body (101, 301), respectively.
    Type: Application
    Filed: March 6, 2017
    Publication date: March 28, 2019
    Inventors: Jonathan R. FREEDMAN, Donald Lee HUBER, Brian TIFFT, Franklin Lee LUCAS, Jr.