Patents by Inventor Jonathan Rothberg

Jonathan Rothberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12243208
    Abstract: Aspects of the technology described herein relate to techniques for calculating, during imaging, a quality of a sequence of images collected during the imaging. Calculating the quality of the sequence of images may include calculating a probability that a medical professional would use a given image for clinical evaluation and a confidence that an automated analysis segmentation performed on the given image is correct. Techniques described herein also include receiving a trigger to perform an automatic measurement on a sequence of images, calculating a quality of the sequence of images, determining whether the quality of the sequence of images exceeds a threshold quality, and performing the automatic measurement on the sequence of images based on determining that the quality of the sequence of images exceeds the threshold quality.
    Type: Grant
    Filed: November 3, 2023
    Date of Patent: March 4, 2025
    Assignee: BFLY Operations, Inc
    Inventors: Alex Rothberg, Igor Lovchinsky, Jimmy Jia, Tomer Gafner, Matthew de Jonge, Jonathan M. Rothberg
  • Publication number: 20240426775
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: June 3, 2024
    Publication date: December 26, 2024
    Inventors: James BUSTILLO, Wolfgang HINZ, Kim JOHNSON, Jonathan ROTHBERG
  • Publication number: 20240394006
    Abstract: Systems and methods are disclosed for synchronizing a document markup modification across a plurality of devices. One method comprises subscribing to one or more events occurring in a first document markup application and receiving a notification indicating a modification to a document markup in the first document markup application. A markup object associated with the modified document markup may be extracted and translated to a cross-compatible markup object. The cross-compatible markup object is transmitted to a second document markup application to be rendered and displayed to a user.
    Type: Application
    Filed: July 31, 2024
    Publication date: November 28, 2024
    Inventors: Peter NOYES, Jonathan ROTHBERG
  • Patent number: 12146853
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: December 11, 2023
    Date of Patent: November 19, 2024
    Assignee: Life Technologies Corporation
    Inventors: James Bustillo, Mark J. Milgrew, Wolfgang Hinz, John Leamon, John Davidson, Martin Huber, Antoine M. van Oijen, Jonathan Rothberg
  • Patent number: 12140560
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: November 12, 2024
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20240370639
    Abstract: Systems and methods are disclosed for synchronizing a document markup modification across a plurality of devices. One method comprises subscribing to one or more events occurring in a first document markup application, the first document markup application being a first thin client application, and receiving a notification indicating a modification to a document markup in the first document markup application. A cross-compatible markup object associated with the modified document markup may be extracted and transmitted to a second document markup application, the second document markup application being a second thin client application.
    Type: Application
    Filed: April 26, 2024
    Publication date: November 7, 2024
    Inventors: Peter NOYES, Jonathan ROTHBERG
  • Patent number: 12079535
    Abstract: Systems and methods are disclosed for synchronizing a document markup modification across a plurality of devices. One method comprises subscribing to one or more events occurring in a first document markup application and receiving a notification indicating a modification to a document markup in the first document markup application. A markup object associated with the modified document markup may be extracted and translated to a cross-compatible markup object. The cross-compatible markup object is transmitted to a second document markup application to be rendered and displayed to a user.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: September 3, 2024
    Assignee: Bluebeam, Inc.
    Inventors: Peter Noyes, Jonathan Rothberg
  • Patent number: 12038405
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: May 26, 2023
    Date of Patent: July 16, 2024
    Assignee: Life Technologies Corporation
    Inventors: Mark Milgrew, Jonathan Rothberg, James Bustillo
  • Publication number: 20240201126
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: December 11, 2023
    Publication date: June 20, 2024
    Inventors: James BUSTILLO, Mark J. MILGREW, Wolfgang HINZ, John LEAMON, John DAVIDSON, Martin HUBER, Antoine M. VAN OIJEN, Jonathan ROTHBERG
  • Patent number: 12001778
    Abstract: Systems and methods are disclosed for synchronizing a document markup modification across a plurality of devices. One method comprises subscribing to one or more events occurring in a first document markup application, the first document markup application being a first thin client application, and receiving a notification indicating a modification to a document markup in the first document markup application. A cross-compatible markup object associated with the modified document markup may be extracted and transmitted to a second document markup application, the second document markup application being a second thin client application.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: June 4, 2024
    Assignee: Bluebeam, Inc.
    Inventors: Peter Noyes, Jonathan Rothberg
  • Publication number: 20240085368
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: May 26, 2023
    Publication date: March 14, 2024
    Inventors: Mark MILGREW, Jonathan ROTHBERG, James BUSTILLO
  • Publication number: 20240067939
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Application
    Filed: July 12, 2023
    Publication date: February 29, 2024
    Inventors: Chieh-Yuan LI, David RUFF, Shiaw-Min CHEN, Jennifer O'NEIL, Rachel KASINSKAS, Jonathan ROTHBERG, Bin LI, Kai Qin LAO
  • Patent number: 11732297
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: August 22, 2023
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 11725195
    Abstract: The present disclosure provides methods, compositions, kits and systems for nucleic acid amplification. In some embodiments, nucleic acid amplification methods include subjecting the nucleic acid to be amplified to partially denaturing conditions. In some embodiments, nucleic acid amplification methods include amplifying without fully denaturing the nucleic acid that is amplified. In some embodiments, the nucleic acid amplification method employs an enzyme that catalyzes homologous recombination and a polymerase. In some embodiments, methods for nucleic acid amplification can be conducted in a single reaction vessel and/or in a single continuous liquid phase of a reaction mixture, without need for compartmentalization of the reaction mixture or immobilization of reaction components.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: August 15, 2023
    Assignee: Life Technologies Corporation
    Inventors: Chieh-Yuan Li, David Ruff, Shiaw-Min Chen, Jennifer O'Neil, Rachel Kasinskas, Jonathan Rothberg, Bin Li, Kai Qin Lao
  • Publication number: 20230168855
    Abstract: Systems and methods are disclosed for synchronizing a document markup modification across a plurality of devices. One method comprises subscribing to one or more events occurring in a first document markup application and receiving a notification indicating a modification to a document markup in the first document markup application. A markup object associated with the modified document markup may be extracted and translated to a cross-compatible markup object. The cross-compatible markup object is transmitted to a second document markup application to be rendered and displayed to a user.
    Type: Application
    Filed: January 25, 2023
    Publication date: June 1, 2023
    Inventors: Peter NOYES, Jonathan ROTHBERG
  • Patent number: 11599325
    Abstract: Systems and methods are disclosed for synchronizing a document markup modification across a plurality of devices. One method comprises subscribing to one or more events occurring in a first document markup application and receiving a notification indicating a modification to a document markup in the first document markup application. A markup object associated with the modified document markup may be extracted and translated to a cross-compatible markup object. The cross-compatible markup object is transmitted to a second document markup application to be rendered and displayed to a user.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: March 7, 2023
    Assignee: Bluebeam, Inc.
    Inventors: Peter Noyes, Jonathan Rothberg
  • Publication number: 20230058778
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 23, 2023
    Inventors: Jonathan ROTHBERG, Wolfgang HINZ, Kim JOHNSON, James BUSTILLO
  • Patent number: 11567029
    Abstract: The invention is directed to apparatus and methods for delivering multiple reagents to, and monitoring, a plurality of analytical reactions carried out on a large-scale array of electronic sensors under minimal noise conditions. In one aspect, the invention provides method of improving signal-to-noise ratios of output signals from the electronic sensors sensing analytes or reaction byproducts by subtracting an average of output signals measured from neighboring sensors where analyte or reaction byproducts are absent. In other aspects, the invention provides an array of electronic sensors integrated with a microwell array for confining analytes and/or particles for analytical reactions and a method for identifying microwells containing analytes and/or particles by passing a sensor-active reagent over the array and correlating sensor response times to the presence or absence of analytes or particles.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: January 31, 2023
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: John Nobile, George T. Roth, Todd Rearick, Jonathan M. Schultz, Jonathan Rothberg, David Marran
  • Publication number: 20220340965
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: May 6, 2022
    Publication date: October 27, 2022
    Inventors: Jonathan Rothberg, Wolfgang HINZ, Kim Johnson, James Bustillo
  • Publication number: 20220237366
    Abstract: Systems and methods are disclosed for synchronizing a document markup modification across a plurality of devices. One method comprises subscribing to one or more events occurring in a first document markup application, the first document markup application being a first thin client application, and receiving a notification indicating a modification to a document markup in the first document markup application. A cross-compatible markup object associated with the modified document markup may be extracted and transmitted to a second document markup application, the second document markup application being a second thin client application.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Peter NOYES, Jonathan ROTHBERG