Patents by Inventor Jonathan S. Morrell

Jonathan S. Morrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11400688
    Abstract: A thermal protection barrier including a base layer having a high melting temperature granular media having free standing granules disposed within the base layer and a distributor grid layer having a plurality of spaced-apart distributors composed of a high melting temperature material disposed adjacent to the base layer. The spaced-apart distributors are dimensioned and configured to provide load bearing support to the thermal protection barrier prior to a breach of the thermal protection barrier and to divide and disperse a superheated flowing mass to the free standing granules of the base layer upon occurrence of a breach. In certain embodiments, the thermal protection barrier is positioned adjacent to a nuclear system such that, upon occurrence of a loss of containment accident, the distributor grid layer is positioned and configured to divide and disperse a superheated flowing nuclear mass to the free standing granules.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: August 2, 2022
    Assignee: Consolidated Nuclear Security, LLC
    Inventors: Edward B. Ripley, Jacob L. Miller, Michael J. Renner, Walter Duerksen, Jonathan S. Morrell
  • Patent number: 10191161
    Abstract: A handheld device for the location and identification of a radiation source, including: a radiation transparent housing; a radiation locator device disposed within the radiation transparent housing operable for determining the location of the radiation source, wherein the radiation locator device includes a plurality of gamma detection crystals arranged in a geometric pattern and separated by a gamma shielding material, a plurality of detectors coupled to the plurality of gamma detection crystals, and a processor module coupled to the plurality of detectors; one or more of a neutron detection crystal and a gamma spectroscopy crystal disposed within the radiation transparent housing adjacent to the radiation locator device; and one or more detectors coupled to the one or more of the neutron detection crystal and the gamma spectroscopy crystal and the processor module; wherein the one or more of the neutron detection crystal and the gamma spectroscopy crystal, the one or more detectors, and the processor module
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: January 29, 2019
    Assignees: Consolidated Nuclear Security, LLC, Jozef Stefan Institute, AlSense d.o.o
    Inventors: Matjaz Vencelj, Toni Petrovic, Andrej Kosicek, Ashley C. Stowe, Jonathan S. Morrell
  • Patent number: 10054697
    Abstract: A device for sensing, locating, and characterizing a radiation emitting source, including: a detection crystal having dimensions great enough such that regional differences in radiation response are generated in the detection crystal by radiation impinging on one or more surfaces of the detection crystal; and a plurality of detectors one or more of coupled to and disposed on a plurality of surfaces of the detection crystal operable for detecting the regional differences in radiation response generated in the detection crystal by the radiation impinging on the one or more surfaces of the detection crystal.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: August 21, 2018
    Assignees: Consolidated Nuclear Security, LLC, Jozef Stefan Institute, AISense D.O.O.
    Inventors: Matjaz Vencelj, Ashley C. Stowe, Toni Petrovic, Jonathan S. Morrell, Andrej Kosicek
  • Patent number: 9978469
    Abstract: A radiation area monitor device/method, utilizing: a radiation sensor having a directional radiation sensing capability; a rotation mechanism operable for selectively rotating the radiation sensor such that the directional radiation sensing capability selectively sweeps an area of interest; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the directional radiation sensing capability selectively sweeps the area of interest. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: May 22, 2018
    Assignees: Consolidated Nuclear Security, LLC, Jozef Stefan Institute, AISense d.o.o
    Inventors: Matjaz Vencelj, Ashley C. Stowe, Toni Petrovic, Jonathan S. Morrell, Andrej Kosicek
  • Patent number: 9881708
    Abstract: A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: January 30, 2018
    Assignees: Consolidated Nuclear Security, LLC, Jozef Stefan Institute, AISense d.o.o.
    Inventors: Matjaz Vencelj, Ashley C. Stowe, Toni Petrovic, Jonathan S. Morrell, Andrej Kosicek
  • Patent number: 8114677
    Abstract: A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 14, 2012
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC.
    Inventors: Jonathan S. Morrell, Edward B. Ripley
  • Patent number: 8028654
    Abstract: An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: October 4, 2011
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 7909907
    Abstract: A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 22, 2011
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Jonathan S. Morrell, Roland D. Seals, Gerald M. Ludtka
  • Publication number: 20100089534
    Abstract: An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
    Type: Application
    Filed: September 8, 2009
    Publication date: April 15, 2010
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Publication number: 20100081206
    Abstract: A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 1, 2010
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES Y-12, LLC.
    Inventors: Jonathan S. Morrell, Edward B. Ripley
  • Patent number: 7622189
    Abstract: Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 7603963
    Abstract: An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 20, 2009
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 7601294
    Abstract: A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 13, 2009
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Edward B. Ripley, Jonathan S. Morrell, Roland D. Seals, Gerard M. Ludtka
  • Patent number: 7527669
    Abstract: A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: May 5, 2009
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Jonathan S. Morrell, Edward B. Ripley
  • Publication number: 20090020187
    Abstract: An apparatus and process for protecting metal from oxidation during metal forming operations. A salt is deposited onto at least a portion of a surface of the metal. The salt is heated in a protective environment until the salt melts on the metal to form a coated metal. The protective environment may then be removed and the coated metal may be exposed to an active environment. The coated metal may then be formed using standard metal forming processes. In alternative embodiments salts are selected for particular melting and vaporizing temperatures. An automated apparatus for coating a metal object with a salt may be provided. An applicator is configured to deposit the salt onto a surface of the metal object to form a salted metal object. A furnace is configured to receive the salted metal object and to melt at least a portion of the salt on the surface of the salted metal object.
    Type: Application
    Filed: July 17, 2007
    Publication date: January 22, 2009
    Inventors: Steven W. Russell, Jerrid S. Holt, Jonathan S. Morrell
  • Patent number: 7323024
    Abstract: Chemical processing apparatuses which incorporate a process vessel, such as a crucible or retort, and which include a gas separation or filtration system. Various embodiments incorporate such features as loose filtration material, semi-rigid filtration material, and structured filtration material. The vessel may include material that is a microwave susceptor. Filtration media may be selected so that if it inadvertently mixes with the chemical process or the reaction products of such process, it would not adversely affect the results of the chemical process.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: January 29, 2008
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Jonathan S. Morrell, Edward B. Ripley, David M. Cecala
  • Publication number: 20070297972
    Abstract: Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 6663976
    Abstract: A laminate article comprises a substrate and a biaxially textured (RE1xRE2(1−x))2O3 buffer layer over the substrate, wherein 0<x<1 and RE1 and RE2 are each selected from the group consisting of Nd, Sm, Eu, Ho, Er, Lu, Gd, Tb, Dy, Tm, and Yb. The (RE1xRE2(1−x))2O3 buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE1xRE2(1−x))2O3 buffer layer. A layer of CeO2 between the YBCO layer and the (RE1xRE2(1−x))2O3 buffer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (R1xRE2(1−x))2O3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: December 16, 2003
    Assignee: UT-Battelle, LLC
    Inventors: David B. Beach, Jonathan S. Morrell, Mariappan Paranthaman, Thomas Chirayil, Eliot D. Specht, Amit Goyal
  • Publication number: 20020178999
    Abstract: A laminate article comprises a substrate and a biaxially textured (RE1xRE2(1−x))2O3 buffer layer over the substrate, wherein 0<x<1 and RE1 and RE2 are each selected from the group consisting of Nd, Sm, Eu, Ho, Er, Lu, Gd, Tb, Dy, Tm, and Yb. The (RE1xRE2(1−x))2O3 buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE1xRE2(1−x))2O3 buffer layer. A layer of CeO2 between the YBCO layer and the (RE1xRE2(1−x))2O3 buffer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (R1xRE2(1−x))2O3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 5, 2002
    Inventors: David B. Beach, Jonathan S. Morrell, Mariappan Paranthaman, Thomas Chirayil, Eliot D. Specht, Amit Goyal
  • Publication number: 20020134300
    Abstract: A laminate article comprises a substrate and a biaxially textured (RE1xRE2(1−x))2O3 buffer layer over the substrate, wherein 0<x<1 and RE1 and RE2 are each selected from the group consisting of Nd, Sm, Eu, Ho, Er, Lu, Gd, Tb, Dy, Tm, and Yb. The (RE1xRE2(1−x))2O3 buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE1xRE2(1−x))2O3 buffer layer. A layer of CeO2 between the YBCO layer and the (RE1xRE2(1−x))2O3 buffer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (RE1xRE2(1−x))2O3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Application
    Filed: September 30, 1999
    Publication date: September 26, 2002
    Inventors: DAVID B. BEACH, JONATHAN S. MORRELL, MARIAPPAN PARATHAMAN, THOMAS G. CHIRAYIL, ELIOT D. SPECHT, AMIT GOYAL