Patents by Inventor Jonathan S. Turner
Jonathan S. Turner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12102577Abstract: The present disclosure relates to patient support systems, such as hospital beds, and particularly to reconfigurable patient support systems movable among a number of different positions. The present disclosure further relates to control algorithms and interfaces for use in patient support systems.Type: GrantFiled: September 18, 2020Date of Patent: October 1, 2024Assignee: Hill-Rom Services, Inc.Inventors: Eric R. Meyer, Darrell Borgman, Timothy Joseph Receveur, Gregory W. Branson, Sandy Mark Richards, Howard J. Boyd, David W. Hornbach, Robert Mark Zerhusen, James Maurice Allen, Jennifer Fearing, Mark S. Chiacchira, Jonathan D. Turner, Mark Lanning, Aziz A. Bhai
-
Patent number: 7106693Abstract: Methods and apparatuses are disclosed for pacing the rate at which packets of one or more information streams are sent from a device, such as, for example, a workstation, computer, communications mechanism, or component thereof. Typically, multiple timing wheels each having a different timing granularity are used to schedule the transmission of packets of information corresponding the to the information streams. Using multiple timing wheels in this manner allows scheduling of a larger range of rates while typically using a significantly smaller amount of memory than a single timing wheel covering the same range of rates. An entry, corresponding to a next portion of an information stream to be sent from the device, is inserted into the timing wheels at a target time for sending the information. At the target time, the entry is removed and placed in a transmit list of items to be sent from the device. In one implementation a single transmit list is used for all timing wheels.Type: GrantFiled: November 2, 2000Date of Patent: September 12, 2006Assignees: Cisco Technology, Inc., Washington UniversityInventors: Jonathan S. Turner, Jerome R. Cox
-
Patent number: 7027397Abstract: Methods and apparatus are disclosed for accumulating traffic information and distributing flow control information in a packet switching system. Traffic information is collected in multiple elements and indications of congestion and/or other types of information useful in determining traffic conditions are forwarded to collecting elements. The collecting elements manipulate the received indications and generate flow control messages which are sent to individual sending components. In one implementation, a switching element maintains for each destination a count of packets within itself which are addressed to the particular destination. Indications of this collected information are sent to collecting switching elements. These collecting elements accumulate the information received from multiple sources. The accumulated information is evaluated, and when a congestion condition is located or anticipated, then flow control messages are distributed to all, or a subset of, the packet sources.Type: GrantFiled: February 15, 2001Date of Patent: April 11, 2006Assignee: Cisco Technology, Inc.Inventors: Jonathan S. Turner, Zubin D. Dittia, Thomas Dejanovic
-
Patent number: 7012889Abstract: Methods and apparatuses are disclosed for controlling the rate at which packets are sent from a first to a second component of a packet switching system. In one implementation, the first component represents an input line card to a packet switch, and the second component represents an output of the packet switch. In such a system, a state is maintained for each output at each line card. For example, these states may include an unconstrained state during which traffic is sent at a full rate to the output, an off state during which no traffic is sent to the output, and a constrained state during which traffic is sent at a reduced rate to the output. Typically, this reduced rate is proportional to the arrival rate of packets at the input line card which are destined for the output. The state of the output is changed based on received flow control information about the output and whether traffic remains queued for the output at the input line card.Type: GrantFiled: November 2, 2000Date of Patent: March 14, 2006Assignee: Cisco Technology, Inc.Inventors: Jonathan S. Turner, Zubin D. Dittia
-
Patent number: 6990063Abstract: Methods and apparatus are disclosed for distributing fault indications and maintaining and using a data structure indicating faults to route traffic in a packet switching system. In one embodiment, a packet switching system detects faults and propagates indications of these faults to the input interfaces of a packet switch, so the packet switch can adapt the selection of a route over which to send a particular packet. Faults are identified by various components of the packet switching system and relayed to one or more switching components to generate a broadcast packet destined for all input ports (i.e., to each I/O interface in a packet switch having folded input and output interfaces). Other embodiments, generate one or more multicast or unicast packets. The I/O interface maintains one or more data structures indicating the state of various portions of the packet switching system.Type: GrantFiled: March 7, 2000Date of Patent: January 24, 2006Assignees: Cisco Technology, Inc., Washington UniversityInventors: Daniel E. Lenoski, William N. Eatherton, John Andrew Fingerhut, Jonathan S. Turner
-
Patent number: 6907041Abstract: Methods and apparatus for forwarding packets in a multistage interconnection network are provided which timestamp packets using a substantially system-wide timing reference and a merge sorting variant to restore packets to the proper order, using the timestamp information carried in the packets. One implementation determines when packets passing along different paths in the network can be safely forwarded, even when no packets have recently been received on some of the paths, by forwarding status messages along otherwise idle paths. The status messages provide information that can be used by downstream components to allow them to determine when packets passing over other paths can safely be forwarded. One implementation simultaneously resequences packets being delivered to all n outputs of the multistage interconnection network. The resequencing operations are distributed among a plurality of switching elements making up the interconnection network.Type: GrantFiled: March 7, 2000Date of Patent: June 14, 2005Assignees: Cisco Technology, Inc., Washington UniversityInventors: Jonathan S. Turner, Zubin D. Dittia, John Andrew Fingerhut
-
Patent number: 6816492Abstract: Methods and apparatus are disclosed for propagating timestamp floors throughout a packet switching system and using the timestamp floors received at a first component of the packet switching system to determine when a packet may be sent from a packet switching system. Each input of a first stage of a packet switching system maintains a floor register which is updated by copying the timestamp from each arriving packet. In some systems, if a packet is not received during a packet time, the timestamp is automatically updated, typically by adding a fixed time value. Periodically, the first stage switching element forwards a timestamp floor to the next stage switching elements. In one implementation, this distributed timestamp floor is the lesser of the earliest timestamp in one of the floor registers in the input queues, and the earliest timestamp in an output queue for the particular next stage switching element.Type: GrantFiled: July 31, 2000Date of Patent: November 9, 2004Assignee: Cisco Technology, Inc.Inventors: Jonathan S. Turner, Daniel E. Lenoski
-
Patent number: 6788689Abstract: Connection distributors are used to route packets corresponding to multiple streams of packets through a packet switching system. During each time slot, one packet is typically sent from each packet stream. During the configuration of a packet stream, a time slot and primary route is determined for the packet stream. The primary route is a route through the packet switch which is non-blocking with other packet streams during the assigned time slot. During a common frame, a packet of each packet stream is sent out of a line card or packet interface to be routed through the packet switch over the designated primary route. During subsequent frames, packets are sent over different routes through the network (until all routes are used and then the cycle repeats). These routes are selected based on a deterministic method so as to maintain the non-blocking characteristic of the primary route selection.Type: GrantFiled: March 7, 2000Date of Patent: September 7, 2004Assignee: Cisco Technology, Inc.Inventors: Jonathan S. Turner, Michael B. Galles
-
Patent number: 6735173Abstract: Methods and apparatus are disclosed for accumulating and distributing information in a packet switching system. For example, it is desirable in certain packet switching systems to communicate the status of internal queues and other port status information from an individual port to all other ports (or at least those which are communicating with the individual port). The amount of information being sent from the individual port is typically very small, such as on the order of a few bits or bytes. By accumulating the information and then broadcasting the collected flow control information, a vast amount of switch fabric resources (e.g., bandwidth) can be saved. In one implementation, flow control information is sent to a destination (e.g., a “mailbox”) within a packet switching fabric which includes a memory in which flow control information is accumulated. After a period of time or based on the occurrence of some event, the accumulated flow control information is distributed.Type: GrantFiled: March 7, 2000Date of Patent: May 11, 2004Assignee: Cisco Technology, Inc.Inventors: Daniel E. Lenoski, Jonathan S. Turner
-
Patent number: 6728211Abstract: Methods and apparatus are also disclosed for responding to received flow control messages indicating a previously congested port is now in a non-congested state. Many different components that have packets to send to a particular output will receive an indication that they are now allowed to send these packets at roughly the same time as the other components. If all components start sending at the same time, then the packet switch might become congested, possibly very quickly. If the packet switch cannot respond and transmit flow control messages to all of these sources fast enough, certain internal buffers could overflow and thus packets might be lost. On implementation causes components to start sending to the destination at varying times to gradually increase the traffic being sent to the destination.Type: GrantFiled: March 7, 2000Date of Patent: April 27, 2004Assignee: Cisco Technology, Inc.Inventors: Vinod Gerard John Peris, Jonathan S. Turner, Zubin D. Dittia, William N. Eatherton
-
Method and apparatus for scheduling packets being sent from a component of a packet switching system
Patent number: 6674721Abstract: Methods and apparatus are disclosed for determining the order to send information arriving at the inputs of a packet switching system. A line card maintains its own data structure indicating flow control information and a queue for each destination it is sending data with its memory. Control logic then controls the placing of the incoming data into these queues and for taking the data out of the queues and sending the data, typically in the form of packets, to the packet switch. As information arrives at a line card, priority outgoing packet time slots are allocated for that destination. In this manner, each destination is given the opportunity to send information at its arrival rate. In the remaining bandwidth or packet cycles available on the outgoing link, the destination queues containing information retained due to a congestion condition are serviced.Type: GrantFiled: March 7, 2000Date of Patent: January 6, 2004Assignee: Cisco Technology, Inc.Inventors: Zubin D. Dittia, Jonathan S. Turner -
Patent number: 6654342Abstract: Methods and apparatus are disclosed for accumulating and distributing flow control information via update messages and piggybacked flow control information in other messages. One implementation operates using at least two techniques. Using a first technique, for every packet entering the switching system from a line card, the switching system conveys flow control information (typically congestion or both congestion and no-congestion indications) for the packet's destination to the line card. Using a second technique, the switching system will periodically convey congestion and no-congestion indications for all destinations to the line cards. In one implementation, when the first technique is used to provide only congestion indications, the periodic distribution of flow control information using the second technique provides non-congested indications which allows the line cards and their sources to resume or begin sending to the non-congested destinations.Type: GrantFiled: March 7, 2000Date of Patent: November 25, 2003Assignee: Cisco Technology, Inc.Inventors: Zubin D. Dittia, William N. Eatherton, John Andrew Fingerhut, Michael B. Galles, Jonathan S. Turner
-
Patent number: 5402415Abstract: Multicasting is implemented in a virtual circuit switch for an ATM network by recycling data cells through the switch fabric a multiple number of times with a copy-by-two network creating an additional data cell upon each recycle to thereby satisfy the number of connection addresses in the multicast connection. Resequencing of the data cells may be implemented at the exit to the switch fabric as well as upon each recycle of data cells through the switch fabric.Type: GrantFiled: April 22, 1993Date of Patent: March 28, 1995Assignee: Washington UniversityInventor: Jonathan S. Turner
-
Patent number: 5339311Abstract: A resequencing buffer and buffer control circuit is disclosed for resequencing data packets into their timed sequence after traversing a switch fabric which can introduce a misordering of data packets because of the varying time intervals required for data packets to traverse the switch fabric in a non-blocking manner. The resequencing buffer controller includes a plurality of hi-directional shift registers for storing each data packet's age and slot number, each bi-directional shift register having an associated slot control circuit for feeding the age and slot number one bit at a time onto a contention bus to thereby determine the oldest data packet eligible for transmission. The contention bus is an exclusive OR wire bus which interconnects the slot control circuits and an output circuit which controls the buffer to output the slot number containing the data packet of oldest age.Type: GrantFiled: January 19, 1993Date of Patent: August 16, 1994Assignee: Washington UniversityInventor: Jonathan S. Turner
-
Patent number: 5260935Abstract: A resequencing buffer and buffer control circuit is disclosed for resequencing data packets into their timed sequence after traversing a switch fabric which can introduce a misordering of data packets because of the varying time intervals required for data packets to traverse the switch fabric in a non-blocking manner. The resequencing buffer controller includes a plurality of bi-directional shift registers for storing each data packet's age and slot number, each bi-directional shift register having an associated slot control circuit for feeding the age and slot number one bit at a time onto a contention bus to thereby determine the oldest data packet eligible for transmission. The contention bus is an exclusive OR wire bus which interconnects the slot control circuits and an output circuit which controls the buffer to output the slot number containing the data packet of oldest age.Type: GrantFiled: March 1, 1991Date of Patent: November 9, 1993Assignee: Washington UniversityInventor: Jonathan S. Turner
-
Patent number: 5229991Abstract: A packet switch having broadcasting capability for an ATM network includes a copy network stage having an increased number of copy outputs over the number of switch inputs and outputs to improve data throughput under worst case conditions, broadcast translation circuits with inputs connected to a multiple number of copy network outputs for multiplexing the data packets therethrough, partitioned memories for the broadcast translation circuits to reduce their memory requirements, and techniques for aligning broadcast copies of data packets for minimizing the number of copies each BTC must translate and thereby reduce each of their memories. All of these enhancements to a prior art broadcast ATM switch substantially reduce its memory requirements to thereby enable broadcasting in an ATM switch to be practically realized.Type: GrantFiled: January 30, 1991Date of Patent: July 20, 1993Assignee: Washington UniversityInventor: Jonathan S. Turner
-
Patent number: 5179551Abstract: A multi-cast switching system comprised of a pair of high speed data networks, each of said data networks being either a Benes network, a Clos network, or a Cantor network, and configured to provide point-to-point switching only in the first network and multi-cast switching in the second network, may be non-blocking for adding a multi-cast connection and re-arrangeably non-blocking for augmenting an existing multi-cast connection using the algorithm which essentially consists of identifying the most lightly loaded middle stage switch, connecting the input to the middle stage switch, and connecting the outputs to the middle stage switch. A minimal speed advantage for each type of network is presented and thereby reduces the cost of each network in order to achieve non-blocking operation.Type: GrantFiled: April 8, 1991Date of Patent: January 12, 1993Assignee: Washington UniversityInventor: Jonathan S. Turner
-
Patent number: 5179556Abstract: A bandwidth management and congestion control scheme for a multi-cast ATM network which includes a buffer reservation mechanism comprised of a state machine for association with each virtual circuit set up through the network, the state machine being adapted to monitor the number of available buffer slots at a data link and reading an encoding scheme for cells comprising a burst of data in order to control its switching from an active to an idle state to thereby control the flow of data through the virtual circuit. A state dependent token pool mechanism is associated with each virtual circuit and generates tokens at varying rates which are "used" by transmitted data in order to monitor and control the average data rate passing through a data link over a virtual circuit. By thus monitoring and controlling the peak data rate and average data rate, the bandwidth for each data link is efficiently managed to maximize data throughput and minimize loss of data cells from data bursts.Type: GrantFiled: August 2, 1991Date of Patent: January 12, 1993Assignee: Washington UniversityInventor: Jonathan S. Turner
-
Patent number: 4901309Abstract: An apparatus for interconnecting a plurality of switch modules is disclosed. The interconnecting apparatus comprises a planar array of switches. Each of the switches has four switching leads, two lying in the plane of the array and one extending perpendicular to the plane on either side thereof. A programmable control enables the establishment of a switched connection between any two of the four leads comprising a particular switch. Switch modules lying on either side of the plane array may be interconnected in this manner.Type: GrantFiled: December 30, 1987Date of Patent: February 13, 1990Assignee: Washington UniversityInventor: Jonathan S. Turner
-
Patent number: 4849968Abstract: A Buffer Management System for a general multipoint packet switching network where the network has terminals transmitting data in the form of packets belonging to multiple channels over communication links through a packet switch array, the packet switches of the array receiving incoming packets from input data links and having memory arrays for temporarily storing the incoming packets for retransmitting the stored packets over output links. The Buffer Management System determines whether a packet should be stored, retransmitted, or discarded during an overload condition by identifying each incoming packet as either an excess packet or a nonexcess packet based on the number of packets stored in the memory array of the same channel as the incoming packet, and writing an incoming nonexcess packet into the memory array when the memory array is full and at least one excess packet is in the memory array and for discarding the excess packet from the memory array.Type: GrantFiled: March 4, 1988Date of Patent: July 18, 1989Assignee: Washington UniversityInventor: Jonathan S. Turner