Patents by Inventor Jonathan T. Kwok

Jonathan T. Kwok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9295847
    Abstract: Method and systems related to monitoring right ventricular function during pacing by a cardiac rhythm management device are described. One or more pacing parameters are selected to provide cardiac resynchronization therapy. For example, the one or more pacing parameters may be selected to provide an optimal or improved therapy. The heart is paced using the selected pacing parameters. While pacing with the selected parameters, pressure is sensed via a pressure sensor disposed the pulmonary artery. The sensed pressure is analyzed to determine right ventricular function achieved during the pacing using the selected pacing parameters. A signal, such as an alert signal or control signal, is generated based on the right ventricular function achieved during the pacing.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 29, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Barun Maskara, Jonathan T. Kwok, Jiang Ding, Yinghong Yu
  • Patent number: 8936556
    Abstract: A respiration pattern of a number of respiration cycles is detected and breath intervals (BI) and tidal volume (TVOL) measurements of each of the respiration cycles are respectively determined. An unevenly sampled instantaneous minute ventilation (iMV) signal is produced using the BI and TVOL measurements, and an evenly sampled iMV signal (resampled iMV signal) is produced using the unevenly sampled iMV signal. Disordered breathing is detected based on a comparison between a baseline threshold and the resampled iMV signal.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: January 20, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kent Lee, Yi Zhang, Paul F. Emerson, Jesse W. Hartley, John D. Hatlestad, Jonathan T. Kwok, Weiguang Shao
  • Publication number: 20140194705
    Abstract: An evaluation of heart failure status is provided based on a disordered breathing index. Patient respiration is sensed and a respiration signal is generated. Disordered breathing episodes are detected based on the respiration signal. A disordered breathing index is determined based on the disordered breathing episodes. The disordered breathing index is trended and used to evaluate heart failure status. The disordered breathing index may be combined with additional information and/or may take into account patient activity, posture, sleep stage, or other patient information.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Jonathan T. Kwok, Marina Brockway, Kent Lee, Quan Ni, Yachuan Pu, Jeffrey E. Stahmann, Yi Zhang, Jesse W. Hartley
  • Patent number: 8696589
    Abstract: An evaluation of heart failure status is provided based on a disordered breathing index. Patient respiration is sensed and a respiration signal is generated. Disordered breathing episodes are detected based on the respiration signal. A disordered breathing index is determined based on the disordered breathing episodes. The disordered breathing index is trended and used to evaluate heart failure status. The disordered breathing index may be combined with additional information and/or may take into account patient activity, posture, sleep stage, or other patient information.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 15, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan T. Kwok, Marina Brockway, Kent Lee, Quan Ni, Yachuan Pu, Jeffrey E. Stahmann, Yi Zhang, Jesse W. Hartley
  • Patent number: 8583224
    Abstract: The invention relates to systems, devices, and methods for detecting infections associated with implantable medical devices. In an embodiment, the invention includes a method of detecting infection in a patient including measuring a physiological parameter using a chronically implanted sensor at a plurality of time points and evaluating the physiological parameter measurements to determine if infection is indicated. In an embodiment, the invention includes an implantable medical device including a first chronically implantable sensor configured to generate a first signal corresponding to a physiological parameter and a controller disposed within a housing, the controller configured to evaluate the first physiological parameter signal to determine if an infection is indicated. Other embodiments are also included herein.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: November 12, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kent Lee, Jonathan T. Kwok, Hugo Andres Belalcazar, Jennifer Lynn Pavlovic, Ronald W. Heil, Jr.
  • Patent number: 7957802
    Abstract: Optimizing cardiac preload based on measured pulmonary artery pressure involves varying, for each repetition of an acute burst protocol, a parameter of pacing applied to a patient's heart during the acute burst protocol. Pulmonary artery pressure is measured during the repetitions of the acute burst protocol. The length of the repetitions is chosen so that the patient's baroreflex system does not adjust to the varied parameter of pacing during the repetitions of the acute burst protocol. An optimum ventricular preload is determined based on the measured pulmonary artery pressure. Pacing therapy is provided using a value of the parameter that is selected based on the determination of optimum ventricular preload.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: June 7, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Jiang Ding, Jonathan T. Kwok, Barun Maskara, Yinghong Yu
  • Publication number: 20100100000
    Abstract: A respiration pattern of a number of respiration cycles is detected and breath intervals (BI) and tidal volume (TVOL) measurements of each of the respiration cycles are respectively determined. An unevenly sampled instantaneous minute ventilation (iMV) signal is produced using the BI and TVOL measurements, and an evenly sampled iMV signal (resampled iMV signal) is produced using the unevenly sampled iMV signal. Disordered breathing is detected based on a comparison between a baseline threshold and the resampled iMV signal.
    Type: Application
    Filed: September 22, 2009
    Publication date: April 22, 2010
    Inventors: Kent Lee, Yi Zhang, Paul F. Emerson, Jesse W. Hartley, John D. Hatlestad, Jonathan T. Kwok, Weiguang Shao
  • Publication number: 20090054945
    Abstract: Optimizing cardiac preload based on measured pulmonary artery pressure involves varying, for each repetition of an acute burst protocol, a parameter of pacing applied to a patient's heart during the acute burst protocol. Pulmonary artery pressure is measured during the repetitions of the acute burst protocol. An optimum ventricular preload is determined based on the measured pulmonary artery pressure. Pacing therapy is provided using a value of the parameter that is selected based on the determination of optimum ventricular preload.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Inventors: Abhilash Patangay, Jiang Ding, Jonathan T. Kwok, Barun Maskara, Yinghong Yu
  • Publication number: 20080064980
    Abstract: The invention relates to systems, devices, and methods for detecting infections associated with implantable medical devices. In an embodiment, the invention includes a method of detecting infection in a patient including measuring a physiological parameter using a chronically implanted sensor at a plurality of time points and evaluating the physiological parameter measurements to determine if infection is indicated. In an embodiment, the invention includes an implantable medical device including a first chronically implantable sensor configured to generate a first signal corresponding to a physiological parameter and a controller disposed within a housing, the controller configured to evaluate the first physiological parameter signal to determine if an infection is indicated. Other embodiments are also included herein.
    Type: Application
    Filed: August 3, 2007
    Publication date: March 13, 2008
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Kent Lee, Jonathan T. Kwok, Hugo Andres Belalcazar, Jennifer Lynn Pavlovic, Ronald W. Heil