Patents by Inventor JONATHAN THOMAS SUTTON

JONATHAN THOMAS SUTTON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065666
    Abstract: A system and method for determining position information for a device within a body of a subject. The device outputs and/or routes an acoustic signal with a frequency of no more than 20 kHz, which is received by at least a first sensor, positioned externally to the body of the subject. A processing system receives the received signal from the sensor, obtains a value for one or more parameters of the received signal and processes the value(s) to determine position information for the device.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 29, 2024
    Inventors: Shyam Bharat, Alvin Chen, Balasundar Iyyavu Raju, Jonathan Thomas Sutton, Grzegorz Andrzej Toporek
  • Patent number: 11832994
    Abstract: An ultrasound control unit (10) is for coupling with an ultrasound transducer unit (12). The control unit is adapted to control a drive configuration or setting of the transducers of the transducer unit, each drive setting having a known power consumption level associated with it. The control unit includes a control module (20) adapted to adjust the drive setting from a first setting to a second setting, the second having a lower associated power consumption that the first. The second setting is tested by an analysis module (16), the analysis module adapted to determine a measure of reliability of ultrasound data acquired by the transducer unit, for the purpose of deriving at least one physiological parameter, when configured in the second setting. The second setting is only used if its determined reliability passes a pre-defined reliability condition.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: December 5, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jonathan Thomas Sutton, Alexander Groth, Frank Michael Weber, Shyam Bharat, Peter Bingley, Balasundar Iyyavu Raju
  • Patent number: 11617561
    Abstract: An ultrasound imaging system is for determining stroke volume and/or cardiac output. The imaging system may include a transducer unit for acquiring ultrasound data of a heart of a subject (or an input for receiving the acquired ultrasound data), and a controller. The controller is adapted to implement a two-step procedure, the first step being an initial assessment step, and the second being an imaging step having two possible modes depending upon the outcome of the assessment. In the initial assessment procedure, it is determined whether regurgitant ventricular flow is present. This is performed using Doppler processing techniques applied to an initial ultrasound data set. If regurgitant flow does not exist, stroke volume is determined using segmentation of 3D ultrasound image data to identify and measure the volume of the left or right ventricle at each of end systole and end-diastole, the difference between them giving a measure of stroke volume.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: April 4, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Balasundar Iyyavu Raju, Peter Bingley, Frank Michael Weber, Jonathan Thomas Sutton, Tilman Wekel, Arthur Bouwman, Erik Korsten
  • Publication number: 20230066948
    Abstract: A method and system is for assisting a user in positioning an ultrasound probe relative to a subject's body. In use, the user moves the probe through a series of positions, and ultrasound image data is captured for each position, the data at each position corresponding to a particular imaging view of the anatomical region being imaged. An assessment procedure (16) is operable to process ultrasound data for different imaging views, and to determine for the data for each view a rating, representative of the suitability of the data for that view for observing one or more anatomical features or deriving one or more clinical parameters from the data. Guidance feedback is generated (18) for the user for assisting the user in positioning the probe, wherein the guidance feedback is based on a history (26) of image view quality over time over the course of the imaging procedure.
    Type: Application
    Filed: January 25, 2021
    Publication date: March 2, 2023
    Inventors: Shyam Bharat, Alvin Chen, Grzegorz Andrzej Toporek, Balasundar Iyyavu Raju, Jonathan Thomas Sutton
  • Patent number: 11583258
    Abstract: The invention provides an ultrasound processing unit. A controller (18) of the unit is adapted to receive ultrasound data of an anatomical region, for example of the heart. The controller processes the ultrasound data over a period of time to monitor and detect whether alignment of a particular anatomical feature (34) represented in the data relative to a field of view (36) of the transducer unit is changing over time. In the event that the alignment is changing, the controller generates an output signal for communicating this to a user, allowing a user to be alerted at an early stage to likelihood of misalignment and loss of imaging or measurement capability.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: February 21, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Frank Michael Weber, Tilman Wekel, Balasundar Iyyavu Raju, Jonathan Thomas Sutton, Peter Bingley
  • Patent number: 11517285
    Abstract: A medical imaging element support unit is for use in fixing a medical imaging element (26) releasably against a region of skin of a subject. The includes a support body (14), having a base for engaging with skin of a subject in use and having a coupling means (22) for releasably coupling the medical imaging element (26) to the support body in use. A pneumatic positioning mechanism facilitates adjustment of a position of the medical imaging element relative to the support body, this being fluidly supplied by an air pump mechanism. The same air pump mechanism facilitates releasable fixation of the support body (14) to the skin, through creation of a configurable suction force at the skin engagement surface.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: December 6, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jonathan Thomas Sutton, Sean Joseph Kyne
  • Publication number: 20220361853
    Abstract: An interface unit (12) for connecting between an ultrasound sensing apparatus (14) and a patient monitor (18) for providing ultrasound monitoring functionality of one or more physiological or anatomical parameters based on processing of ultrasound data. The interface unit includes means for processing acquired ultrasound data to derive measurements of one or more physiological or anatomical parameters and is configured for outputting said derived measurements to a coupled patient monitor unit, e.g. for display and/or trending by the patient monitor.
    Type: Application
    Filed: September 20, 2020
    Publication date: November 17, 2022
    Inventors: Shyam Bharat, Jonathan Thomas Sutton, Balasundar Iyyavu Raju, Harald Greiner, Frank Enslin, McKee Dunn Poland, Martha Gail Grewe Wilson, Ivan Salgo
  • Publication number: 20220225963
    Abstract: The invention provides a method for guiding the acquisition of ultrasound data within a 3D field of view. The method begins by obtaining initial 2D B-mode ultrasound data of a cranial region of a subject from a reduced field of view at a first imaging location and determining whether a vessel of interest is located within the 3D field of view based on the initial 2D B-mode ultrasound data. If the vessel of interest is not located within the 3D field of view, a guidance instruction is generated based on the initial 2D B-mode ultrasound data, wherein the guidance instruction is adapted to indicate a second imaging location to obtain further ultrasound data. If the vessel of interest is located within the 3D field of view 3D Doppler ultrasound data is obtained of the cranial region from the 3D field of view.
    Type: Application
    Filed: May 29, 2020
    Publication date: July 21, 2022
    Inventors: Jonathan Thomas Sutton, Balasundar Iyyavu Raju, Shyam Bharat, Jonathan Fincke, Shriram Sethuraman, Raghavendra Srinivasa Naidu
  • Publication number: 20220160327
    Abstract: A method (20) and device for deriving an estimate of intracranial blood pressure based on motion data for a wall of an intracranial blood vessel, intracranial blood flow velocity, and a blood pressure signal measured at a location outside the brain. The method is based on identifying (28) a time offset between the two intracranial signals (vessel wall movement and vessel blood flow), and then applying (30) this offset to the blood pressure signal acquired from outside the brain to obtain a fourth signal, indicative of estimated intracranial blood pressure.
    Type: Application
    Filed: April 2, 2020
    Publication date: May 26, 2022
    Inventors: Jonathan Thomas SUTTON, Raghavendra SRINIVASA NAIDU, Shyam BHARAT, Jonathan FINCKE, Balasundar Iyyavu RAJU, Shriram SETHURAMAN
  • Publication number: 20220071599
    Abstract: An ultrasound control unit (12) is for configuring visualization of ultrasound data using in use a display unit. The control unit is adapted to acquire ultrasound image data and to automatically control visualization of the most relevant parts and views the data, based on current levels of a number of different monitored physiological parameters. In particular, responsively to one of the physiological parameters entering or leaving a pre-defined range of values (e.g. representative of an alert or normal condition respective for the patient), the control unit determines a most appropriate anatomical region within the image data for representing the changed physiological parameter, and a most useful visualization mode (e.g. view) for presenting or showing that anatomical region within the image data. One or more display frames are generated which show the anatomical region visualized in accordance with the selected visualization mode.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 10, 2022
    Inventors: Jonathan Thomas SUTTON, Peter BINGLEY, Shyam BHARAT, Alexandra GROTH, Frank Michael WEBER, Harald GREINER, Balasundar Iyyavu RAJU
  • Patent number: 11259781
    Abstract: The present disclosure describes a therapeutic ultrasound system configured to adaptively transmit ultrasound pulses toward microbubbles in a treatment region to remove an occlusion. In some examples, the system may include a treatment pulse unit configured to transmit an ultrasound pulse to a treatment region of a subject, the treatment region including a plurality of microbubbles. An echo detection unit may be configured to receive one or more echoes responsive to the ultra sound pulse. In some examples, the system may also include a data processor configured to identify, using data associated with the echoes, at least one echo signature indicative of a dynamic state of the microbubbles in response to the ultrasound pulse. A controller may be configured to adjust one or more parameters of an additional ultrasound pulse transmitted to the treatment region via the treatment pulse unit based on the at least one echo signature.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: March 1, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: William Tao Shi, Jonathan Thomas Sutton, Jeffry Earl Powers, Ralf Seip
  • Publication number: 20210378638
    Abstract: An ultrasound control unit (10) is for coupling with an ultrasound transducer unit (12). The control unit is adapted to control a drive configuration or setting of the transducers of the transducer unit, each drive setting having a known power consumption level associated with it. The control unit includes a control module (20) adapted to adjust the drive setting from a first setting to a second setting, the second having a lower associated power consumption that the first. The second setting is tested by an analysis module (16), the analysis module adapted to determine a measure of reliability of ultrasound data acquired by the transducer unit, for the purpose of deriving at least one physiological parameter, when configured in the second setting. The second setting is only used if its determined reliability passes a pre-defined reliability condition.
    Type: Application
    Filed: October 21, 2019
    Publication date: December 9, 2021
    Inventors: Jonathan Thomas SUTTON, Alexander GROTH, Frank Michael WEBER, Shyam BHARAT, Peter BINGLEY, Balasundar Iyyavu RAJU
  • Publication number: 20210275040
    Abstract: Systems, devices, and methods for performing photoacoustic measurements using ultrasound-based guidance are provided. In one embodiment, an imaging system includes: an ultrasound imaging probe comprising an ultrasound transducer array, a processor circuit in communication with the ultrasound imaging probe, and a light source configured to emit light. The processor circuit receives first ultrasound data representative of an anatomical feature within a field of view, identifies a location of the anatomical feature within the field of view, and performs a photoacoustic measurement using the identified location of the anatomical feature. Performing the photoacoustic measurement includes: controlling the light source to emit light into the field of view and processing second ultrasound data representative of photoacoustic energy generated in the anatomical feature by the light source. The processor circuit then outputs a graphical representation of the photoacoustic measurement to a display.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 9, 2021
    Inventors: Jonathan Fincke, Balasundar Iyyavu Raju, Jonathan Thomas Sutton, Shriram Sethuraman
  • Publication number: 20210267572
    Abstract: A medical imaging element support unit is for use in fixing a medical imaging element (26) releasably against a region of skin of a subject. The support unit includes a support body (14), having a base for engaging with skin of a subject in use and having a coupling means (22) for releasably coupling the medical imaging element (26) to the support body in use. A pneumatic positioning mechanism facilitates adjustment of a position of the medical imaging element relative to the support body, this being fluidly supplied by an air pump mechanism. The same air pump mechanism facilitates releasable fixation of the support body (14) to the skin, through creation of a configurable suction force at the skin engagement surface.
    Type: Application
    Filed: September 4, 2019
    Publication date: September 2, 2021
    Inventors: Jonathan Thomas Sutton, Sean Joseph Kyne
  • Publication number: 20210196228
    Abstract: An ultrasound imaging system is for determining stroke volume and/or cardiac output. The imaging system may include a transducer unit for acquiring ultrasound data of a heart of a subject (or an input for receiving the acquired ultrasound data), and a controller. The controller is adapted to implement a two-step procedure, the first step being an initial assessment step, and the second being an imaging step having two possible modes depending upon the outcome of the assessment. In the initial assessment procedure, it is determined whether regurgitant ventricular flow is present. This is performed using Doppler processing techniques applied to an initial ultrasound data set. If regurgitant flow does not exist, stroke volume is determined using segmentation of 3D ultrasound image data to identify and measure the volume of the left or right ventricle at each of end systole and end-diastole, the difference between them giving a measure of stroke volume.
    Type: Application
    Filed: October 16, 2018
    Publication date: July 1, 2021
    Inventors: Balasundar Iyyavu RAJU, Peter BINGLEY, Frank Michael WEBER, Jonathan Thomas SUTTON, Tilman WEKEL, Arthur BOUWMAN, Erik KORSTEN
  • Publication number: 20210145413
    Abstract: The invention provides an ultrasound processing unit. A controller (18) of the unit is adapted to receive ultrasound data of an anatomical region, for example of the heart. The controller processes the ultrasound data over a period of time to monitor and detect whether alignment of a particular anatomical feature (34) represented in the data relative to a field of view (36) of the transducer unit is changing over time. In the event that the alignment is changing, the controller generates an output signal for communicating this to a user, allowing a user to be alerted at an early stage to likelihood of misalignment and loss of imaging or measurement capability.
    Type: Application
    Filed: April 9, 2019
    Publication date: May 20, 2021
    Inventors: Frank Michael Weber, Tilman Wekel, Balasundar Iyyavu Raju, Jonathan Thomas Sutton, Peter Bingley
  • Publication number: 20200352542
    Abstract: Ultrasound image devices, systems, and methods are provided. A medical ultrasound imaging system, comprising an interface in communication with an ultrasound imaging component and configured to receive a first image representative of blood vessels of a brain of a patient while the ultrasound imaging component is positioned at a first imaging position with respect to the patient; and a processing component in communication with the interface and configured to apply a convolutional network (CNN) to the first image to produce a motion control configuration for repositioning the ultrasound imaging component from the first imaging position to a second imaging position associated with a transcranial examination, the CNN trained based on at least a known blood vessel topography.
    Type: Application
    Filed: January 23, 2019
    Publication date: November 12, 2020
    Inventors: CLAUDIA ERRICO, JONATHAN THOMAS SUTTON, CHRISTINE SWISHER, HAIBO WANG
  • Publication number: 20200107811
    Abstract: An ultrasound system performs cranial therapy using a headset mounted to the head of a subject which contains a therapy transducer and a motion detecting transducer. At the outset of therapy, echo signals are acquired by the motion detecting transducer and stored. Thereafter, echo signals are acquired again by the motion detecting transducer and compared or correlated with the signals stored at the outset of therapy. When a difference is determined between the compared or correlated signals, an alert is issued by the system that transducer motion or acoustic decoupling may have occurred.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 9, 2020
    Inventors: JONATHAN THOMAS SUTTON, WILLIAM TAO SHI, JEFFRY EARL POWERS, RALF SEIP
  • Publication number: 20190350557
    Abstract: The present disclosure describes a therapeutic ultrasound system configured to adaptively transmit ultrasound pulses toward microbubbles in a treatment region to remove an occlusion. In some examples, the system may include a treatment pulse unit configured to transmit an ultrasound pulse to a treatment region of a subject, the treatment region including a plurality of microbubbles. An echo detection unit may be configured to receive one or more echoes responsive to the ultra sound pulse. In some examples, the system may also include a data processor configured to identify, using data associated with the echoes, at least one echo signature indicative of a dynamic state of the microbubbles in response to the ultrasound pulse. A controller may be configured to adjust one or more parameters of an additional ultrasound pulse transmitted to the treatment region via the treatment pulse unit based on the at least one echo signature.
    Type: Application
    Filed: December 12, 2017
    Publication date: November 21, 2019
    Inventors: William Tao SHI, JONATHAN THOMAS SUTTON, JEFFRY EARL POWERS, RALF SEIP
  • Publication number: 20190329075
    Abstract: An ultrasound system utilizes an array transducer to perform sonothrombolysis treatment. The system also produces a vascular map of flow characteristics in the vicinity of the therapy site in a subject. The vascular map is used to formulate a treatment plan which includes the number, focusing, timing, and steering of beams of a pattern of therapy beams transmitted during a transmission interval. Formulation of the treatment plan considers factors such as the direction of microbubble flow toward a therapy site, the flow velocity, the spacing between successive therapy beam transmissions, the number of therapy beams needed to “paint” a therapy region, and grating lobe locations, many of which can be determined from the vascular map.
    Type: Application
    Filed: December 6, 2017
    Publication date: October 31, 2019
    Inventors: JONATHAN THOMAS SUTTON, RALF SEIP, WILLIAM TAO SHI, JEFFRY EARL POWERS