Patents by Inventor Jonathon C. Kelm

Jonathon C. Kelm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230201947
    Abstract: A welding or additive manufacturing power supply includes output circuitry configured to generate a welding waveform, a current sensor for measuring a welding current generated by the output circuitry, a voltage sensor for measuring an output voltage of the welding waveform, and a controller operatively connected to the output circuitry to control the welding waveform, and operatively connected to the current sensor and the voltage sensor to monitor the welding current and the output voltage. A portion of welding waveform includes a controlled change in current from a first level to a second level different from the first level. The controller is configured to determine a circuit inductance from the output voltage and the controlled change in current, and further determine a change in resistance of a consumable electrode in real time based on the circuit inductance.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Inventors: Daniel P. Fleming, Judah B. Henry, Jonathon C. Kelm, Edward D. Hillen
  • Patent number: 11623292
    Abstract: A welding or additive manufacturing power supply includes output circuitry configured to generate a welding waveform, a current sensor for measuring a welding current generated by the output circuitry, a voltage sensor for measuring an output voltage of the welding waveform, and a controller operatively connected to the output circuitry to control the welding waveform, and operatively connected to the current sensor and the voltage sensor to monitor the welding current and the output voltage. A portion of welding waveform includes a controlled change in current from a first level to a second level different from the first level. The controller is configured to determine a circuit inductance from the output voltage and the controlled change in current, and further determine a change in resistance of a consumable electrode in real time based on the circuit inductance.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 11, 2023
    Assignee: Lincoln Global, Inc.
    Inventors: Daniel P. Fleming, Judah B. Henry, Jonathon C. Kelm, Edward D. Hillen
  • Publication number: 20230027436
    Abstract: A welding system includes a welding power supply, wire feeder, and welding circuit connecting the power supply to the wire feeder. The power supply and the wire feeder are configured for bidirectional communication over the welding circuit. The power supply includes a voltage sensor that measures a voltage level, and a current sensor that measures a current level, on the welding circuit. The power supply is configured to operate in a first welding mode to output a power voltage level to the welding circuit to power the wire feeder in response to a communication from the wire feeder over the welding circuit. The power supply generates periodic voltage dip pulses on the welding circuit, and automatically switches to a second welding mode different from the first welding mode based on the voltage level on the welding circuit falling below a threshold voltage level during a voltage dip pulse.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 26, 2023
    Inventors: Jonathon C. Kelm, William D. Wilder, James P. Zucker
  • Publication number: 20200306859
    Abstract: A welding or additive manufacturing power supply includes output circuitry configured to generate a welding waveform, a current sensor for measuring a welding current generated by the output circuitry, a voltage sensor for measuring an output voltage of the welding waveform, and a controller operatively connected to the output circuitry to control the welding waveform, and operatively connected to the current sensor and the voltage sensor to monitor the welding current and the output voltage. A portion of welding waveform includes a controlled change in current from a first level to a second level different from the first level. The controller is configured to determine a circuit inductance from the output voltage and the controlled change in current, and further determine a change in resistance of a consumable electrode in real time based on the circuit inductance.
    Type: Application
    Filed: September 27, 2019
    Publication date: October 1, 2020
    Inventors: Daniel P. Fleming, Judah B. Henry, Jonathon C. Kelm, Edward D. Hillen
  • Patent number: 7957355
    Abstract: A Swarm Autonomous Routing Algorithm (SARA) is performed by simple communication node devices for node to node communications in a network, especially a Mobile Ad hoc NETwork (MANET). Each node maintains a table of pheromone values for known neighbor nodes. Pheromone values are dynamic for adapting to a dynamic arrangement of nodes, and are updated either passively or actively. Routing tables are not used. When a node receives a packet, it uses the pheromone table to simply determine whether or not to forward (rebroadcast) the packet to a neighbor node, and if possible, determines and indicates the best neighbor node for next forwarding the packet. Destination Zone Routing (DZR) and Swarm Location Service (SLS) are alternative enhancements of SARA that can be used for more efficient routing when nodes are location aware/knowledgeable. SLS may also be used to improve routing algorithms other than SARA.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: June 7, 2011
    Inventors: Mark J. Heiferling, Jonathon C. Kelm
  • Patent number: 7813326
    Abstract: A Swarm Autonomous Routing Algorithm (SARA) is performed by simple communication node devices for node to node communications in a network, especially a Mobile Ad hoc NETwork (MANET). Each node maintains a table of pheromone values for known neighbor nodes. Pheromone values are dynamic for adapting to a dynamic arrangement of nodes, and are updated either passively or actively. Routing tables are not used. When a node receives a packet, it uses the pheromone table to simply determine whether or not to forward (rebroadcast) the packet to a neighbor node, and if possible, determines and indicates the best neighbor node for next forwarding the packet. Destination Zone Routing (DZR) and Swarm Location Service (SLS) are alternative enhancements of SARA that can be used for more efficient routing when nodes are location aware/knowledgeable. SLS may also be used to improve routing algorithms other than SARA.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: October 12, 2010