Patents by Inventor Jong-Jan Lee

Jong-Jan Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276754
    Abstract: Fluidic assembly methods are presented for the fabrication of emissive displays. An emissive substrate is provided with a top surface, and a first plurality of wells formed in the top surface. Each well has a bottom surface with a first electrical interface. Also provided is a liquid suspension of emissive elements. The suspension is flowed across the emissive substrate and the emissive elements are captured in the wells. As a result of annealing the emissive substrate, electrical connections are made between each emissive element to the first electrical interface of a corresponding well. A eutectic solder interface metal on either the substrate or the emissive element is desirable as well as the use of a fluxing agent prior to thermal anneal. The emissive element may be a surface mount light emitting diode (SMLED) with two electrical contacts on its top surface (adjacent to the bottom surfaces of the wells).
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: April 30, 2019
    Assignee: eLux, Inc.
    Inventors: Kenji Sasaki, Paul J. Schuele, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 10276755
    Abstract: Fluidic assembly methods are presented for the fabrication of emissive displays. An emissive substrate is provided with a top surface, and a first plurality of wells formed in the top surface. Each well has a bottom surface with a first electrical interface. Also provided is a liquid suspension of emissive elements. The suspension is flowed across the emissive substrate and the emissive elements are captured in the wells. As a result of annealing the emissive substrate, electrical connections are made between each emissive element to the first electrical interface of a corresponding well. A eutectic solder interface metal on either the substrate or the emissive element is desirable as well as the use of a fluxing agent prior to thermal anneal. The emissive element may be a surface mount light emitting diode (SMLED) with two electrical contacts on its top surface (adjacent to the bottom surfaces of the wells).
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: April 30, 2019
    Assignee: eLux, Inc.
    Inventors: Kenji Sasaki, Paul J. Schuele, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 10236279
    Abstract: A method is provided for fabricating an emissive display substrate with a light management system. The method provides a transparent first substrate with a top surface and forms a plurality of emissive element wells. The well sidewalls are formed from a light absorbing material or a light reflector material. In one aspect, a light blocking material film layer is formed overlying the first substrate top surface, and the emissive element sidewalls are formed in the light blocking material film layer. In another aspect, a transparent second substrate is formed overlying the first substrate top surface. Then, the emissive element wells are formed in the second substrate with via surfaces, and the light blocking material is deposited overlying the well via surfaces. Additionally, the light blocking material may be formed on the bottom surface of each well. An emissive display substrate with light management system is provided below.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: March 19, 2019
    Assignee: eLux, Inc.
    Inventors: Kurt Ulmer, Paul J. Schuele, Kenji Sasaki, Jong-Jan Lee
  • Patent number: 10211364
    Abstract: A surface mount emissive element is provided with a top surface and a bottom surface. A first electrical contact is formed exclusively on the top surface, and a second electrical contact is formed exclusively on the top surface. A post extends from the bottom surface. An emissive display is also provided made from surface mount emissive elements and an emissions substrate. The emissions substrate has a top surface with a first plurality of wells formed in the emissions substrate top surface. Each well has a bottom surface, sidewalls, a first electrical interface formed on the bottom surface, and a second electrical interface formed on the bottom surface. The emissions substrate also includes a matrix of column and row conductive traces forming a first plurality of column/row intersections, where each column/row intersection is associated with a corresponding well. A first plurality of emissive elements populates the wells.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: February 19, 2019
    Assignee: eLux, Inc.
    Inventors: Paul J. Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 10170664
    Abstract: A surface mount emissive element is provided with a top surface and a bottom surface. A first electrical contact is formed exclusively on the top surface, and a second electrical contact is formed exclusively on the top surface. A post extends from the bottom surface. An emissive display is also provided made from surface mount emissive elements and an emissions substrate. The emissions substrate has a top surface with a first plurality of wells formed in the emissions substrate top surface. Each well has a bottom surface, sidewalls, a first electrical interface formed on the bottom surface, and a second electrical interface formed on the bottom surface. The emissions substrate also includes a matrix of column and row conductive traces forming a first plurality of column/row intersections, where each column/row intersection is associated with a corresponding well. A first plurality of emissive elements populates the wells.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: January 1, 2019
    Assignee: eLux, Inc.
    Inventors: Paul J. Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 10164142
    Abstract: A flip chip light emitting diode includes a semiconductor layer comprising an epitaxial layer an N-semiconductor layer, a light active layer and a P-semiconductor layer arranged from top to bottom in series. A first electrode mounted on the semiconductor layer. A second electrode mounted on the semiconductor layer. A insulating layer mounted on the semiconductor layer. The N-semiconductor layer protrudes away from the epitaxial layer to form a protruding portion. The light active layer and the P-semiconductor layer mounts on the protruding portion in series. The insulating layer mounts between the first electrode and the protruding portion, the light active layer, the P-semiconductor layer and the second electrode. The flip chip light emitting diode also comprises a supporting portion, the supporting portion is mounted on a top surface of the epitaxial layer by a connecting portion. The connecting portion has same or different materials with the supporting portion.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: December 25, 2018
    Assignees: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC., Innolux Corporation
    Inventors: Po-Min Tu, Chien-Shiang Huang, Chien-Chung Peng, Tzu-Chien Hung, Shih-Cheng Huang, Chang-Ho Chen, Tsau-Hua Hsieh, Jong-Jan Lee, Paul-John Schuele
  • Publication number: 20180219139
    Abstract: Fluidic assembly methods are presented for the fabrication of emissive displays. An emissive substrate is provided with a top surface, and a first plurality of wells formed in the top surface. Each well has a bottom surface with a first electrical interface. Also provided is a liquid suspension of emissive elements. The suspension is flowed across the emissive substrate and the emissive elements are captured in the wells. As a result of annealing the emissive substrate, electrical connections are made between each emissive element to the first electrical interface of a corresponding well. A eutectic solder interface metal on either the substrate or the emissive element is desirable as well as the use of a fluxing agent prior to thermal anneal. The emissive element may be a surface mount light emitting diode (SMLED) with two electrical contacts on its top surface (adjacent to the bottom surfaces of the wells).
    Type: Application
    Filed: March 21, 2018
    Publication date: August 2, 2018
    Inventors: Kenji Sasaki, Paul J. Schuele, Kurt Ulmer, Jong-Jan Lee
  • Publication number: 20180219138
    Abstract: Fluidic assembly methods are presented for the fabrication of emissive displays. An emissive substrate is provided with a top surface, and a first plurality of wells formed in the top surface. Each well has a bottom surface with a first electrical interface. Also provided is a liquid suspension of emissive elements. The suspension is flowed across the emissive substrate and the emissive elements are captured in the wells. As a result of annealing the emissive substrate, electrical connections are made between each emissive element to the first electrical interface of a corresponding well. A eutectic solder interface metal on either the substrate or the emissive element is desirable as well as the use of a fluxing agent prior to thermal anneal. The emissive element may be a surface mount light emitting diode (SMLED) with two electrical contacts on its top surface (adjacent to the bottom surfaces of the wells).
    Type: Application
    Filed: March 21, 2018
    Publication date: August 2, 2018
    Inventors: Kenji Sasaki, Paul J. Schuele, Kurt Ulmer, Jong-Jan Lee
  • Publication number: 20180212105
    Abstract: A flip chip light emitting diode includes a semiconductor layer comprising an epitaxial layer an N-semiconductor layer, a light active layer and a P-semiconductor layer arranged from top to bottom in series. A first electrode mounted on the semiconductor layer. A second electrode mounted on the semiconductor layer. A insulating layer mounted on the semiconductor layer. The N-semiconductor layer protrudes away from the epitaxial layer to form a protruding portion. The light active layer and the P-semiconductor layer mounts on the protruding portion in series. The insulating layer mounts between the first electrode and the protruding portion, the light active layer, the P-semiconductor layer and the second electrode. The flip chip light emitting diode also comprises a supporting portion, the supporting portion is mounted on a top surface of the epitaxial layer by a connecting portion. The connecting portion has same or different materials with the supporting portion.
    Type: Application
    Filed: June 27, 2017
    Publication date: July 26, 2018
    Inventors: PO-MIN TU, CHIEN-SHIANG HUANG, CHIEN-CHUNG PENG, TZU-CHIEN HUNG, SHIH-CHENG HUANG, CHANG-HO CHEN, TSAU-HUA HSIEH, JONG-JAN LEE, PAUL-JOHN SCHUELE
  • Publication number: 20180158979
    Abstract: A surface mount emissive element is provided with a top surface and a bottom surface. A first electrical contact is formed exclusively on the top surface, and a second electrical contact is formed exclusively on the top surface. A post extends from the bottom surface. An emissive display is also provided made from surface mount emissive elements and an emissions substrate. The emissions substrate has a top surface with a first plurality of wells formed in the emissions substrate top surface. Each well has a bottom surface, sidewalls, a first electrical interface formed on the bottom surface, and a second electrical interface formed on the bottom surface. The emissions substrate also includes a matrix of column and row conductive traces forming a first plurality of column/row intersections, where each column/row intersection is associated with a corresponding well. A first plurality of emissive elements populates the wells.
    Type: Application
    Filed: January 19, 2018
    Publication date: June 7, 2018
    Inventors: Paul J. Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Publication number: 20180145057
    Abstract: A method is provided for fabricating an emissive display substrate with a light management system. The method provides a transparent first substrate with a top surface and forms a plurality of emissive element wells. The well sidewalls are formed from a light absorbing material or a light reflector material. In one aspect, a light blocking material film layer is formed overlying the first substrate top surface, and the emissive element sidewalls are formed in the light blocking material film layer. In another aspect, a transparent second substrate is formed overlying the first substrate top surface. Then, the emissive element wells are formed in the second substrate with via surfaces, and the light blocking material is deposited overlying the well via surfaces. Additionally, the light blocking material may be formed on the bottom surface of each well. An emissive display substrate with light management system is provided below.
    Type: Application
    Filed: January 16, 2018
    Publication date: May 24, 2018
    Inventors: Kurt Ulmer, Paul J. Schuele, Kenji Sasaki, Jong-Jan Lee
  • Patent number: 9966602
    Abstract: Methods are presented for synthesizing metal cyanometallate (MCM). A first method provides a first solution of AXM2Y(CN)Z, to which a second solution including M1 is dropwise added. As a result, a precipitate is formed of ANM1PM2Q (CN)R.FH2O, where N is in the range of 1 to 4. A second method for synthesizing MCM provides a first solution of M2C(CN)B, which is dropwise added to a second solution including M1. As a result, a precipitate is formed of M1[M2S(CN)G]1/T.DH2O, where S/T is greater than or equal to 0.8. Low vacancy MCM materials are also presented.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 8, 2018
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Sean Vail, Jong-Jan Lee
  • Publication number: 20180047867
    Abstract: A surface mount emissive element is provided with a top surface and a bottom surface. A first electrical contact is formed exclusively on the top surface, and a second electrical contact is formed exclusively on the top surface. A post extends from the bottom surface. An emissive display is also provided made from surface mount emissive elements and an emissions substrate. The emissions substrate has a top surface with a first plurality of wells formed in the emissions substrate top surface. Each well has a bottom surface, sidewalls, a first electrical interface formed on the bottom surface, and a second electrical interface formed on the bottom surface. The emissions substrate also includes a matrix of column and row conductive traces forming a first plurality of column/row intersections, where each column/row intersection is associated with a corresponding well. A first plurality of emissive elements populates the wells.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 15, 2018
    Inventors: Paul J. Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Publication number: 20180012873
    Abstract: An emissive panel and associated assembly method are provided. The method provides an emissive substrate having an insulating layer with a top surface and a back surface, and a dielectric layer overlying the insulating layer patterned to form a plurality of wells. Each well has a bottom surface formed on the insulating layer top surface with a first electrical interface electrically connected to a first conductive pressure channel (CPC). The CPCs are each made up of a pressure via with sidewalls formed between the well bottom surface and the insulating layer back surface. A metal layer coats the sidewalls, and a medium flow passage formed interior to the metal layer. The method uses negative pressure through the CPCs to help capture emissive elements in a liquid flow deposition process.
    Type: Application
    Filed: August 31, 2017
    Publication date: January 11, 2018
    Inventors: Jong-Jan Lee, Paul J. Schuele
  • Patent number: 9847527
    Abstract: A battery structure is provided for making alkali ion and alkaline-earth ion batteries. The battery has a hexacyanometallate cathode, a non-metal anode, and non-aqueous electrolyte. A method is provided for forming the hexacyanometallate battery cathode and non-metal battery anode prior to the battery assembly. The cathode includes hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula A?n?AmM1xM2y(CN)6, and have a Prussian Blue hexacyanometallate crystal structure.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: December 19, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Jong-Jan Lee, Motoaki Nishijima, Seizoh Kakimoto
  • Patent number: 9825202
    Abstract: A surface mount emissive element is provided with a top surface and a bottom surface. A first electrical contact is formed exclusively on the top surface, and a second electrical contact is formed exclusively on the top surface. A post extends from the bottom surface. An emissive display is also provided made from surface mount emissive elements and an emissions substrate. The emissions substrate has a top surface with a first plurality of wells formed in the emissions substrate top surface. Each well has a bottom surface, sidewalls, a first electrical interface formed on the bottom surface, and a second electrical interface formed on the bottom surface. The emissions substrate also includes a matrix of column and row conductive traces forming a first plurality of column/row intersections, where each column/row intersection is associated with a corresponding well. A first plurality of emissive elements populates the wells.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 21, 2017
    Assignee: eLux, Inc.
    Inventors: Paul J. Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 9774066
    Abstract: A battery and an associated method are provided for generating power using an air cathode battery with a slurry anode. The method provides a battery with an air cathode separated from an anode current collector by an electrically insulating separator and an extrusion gap. The anode current collector extruder has a first plate with a plurality of slurry outlet perforations, and a sleeve having a first partition immediately adjacent to the extruder first plate, with a plurality of slurry inlet perforations. Active slurry is provided under pressure to an extruder inlet, and the extruder first plate slurry outlet perforations are selectively aligned with sleeve first partition slurry inlet perforations. Active slurry deposits are formed in the extrusion gap to mechanically charge the battery. In the discharge position, the sleeve moves so that the perforations no longer align, and slurry in the extruder is isolated from slurry in the extrusion gap.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: September 26, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Hidayat Kisdarjono, Yuhao Lu, David Evans, Jong-Jan Lee
  • Patent number: 9761866
    Abstract: A method is provided for forming a metal battery electrode with a pyrolyzed coating. The method provides a metallorganic compound of metal (Me) and materials such as carbon (C), sulfur (S), nitrogen (N), oxygen (O), and combinations of the above-listed materials, expressed as MeXCYNZSXXOYY, where Me is a metal such as tin (Sn), antimony (Sb), or lead (Pb), or a metal alloy. The method heats the metallorganic compound, and as a result of the heating, decomposes materials in the metallorganic compound. In one aspect, decomposing the materials in the metallorganic compound includes forming a chemical reaction between the Me particles and the materials. An electrode is formed of Me particles coated by the materials. In another aspect, the Me particles coated with a material such as a carbide, a nitride, a sulfide, or combinations of the above-listed materials.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 12, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Patent number: 9742027
    Abstract: A first method for fabricating an anode for use in sodium-ion and potassium-ion batteries includes mixing a conductive carbon material having a low surface area, a hard carbon material, and a binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A second method for fabricating an anode for use in sodium-ion and potassium-ion batteries mixes a metal-containing material, a hard carbon material, and binder material. A carbon-composite material is thus formed and coated on a conductive substrate. A third method for fabricating an anode for use in sodium-ion and potassium-ion batteries provides a hard carbon material having a pyrolyzed polymer coating that is mixed with a binder material to form a carbon-composite material, which is coated on a conductive substrate. Descriptions of the anodes and batteries formed by the above-described methods are also provided.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: August 22, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sean Vail, Yuhao Lu, Long Wang, Motoaki Nishijima, Jong-Jan Lee
  • Patent number: 9735444
    Abstract: A method is provided for fabricating a graphene-doped, carbohydrate-derived hard carbon (G-HC) composite material for alkali metal-ion batteries. The method provides graphene oxide (GO) dispersed in an aqueous solution. A carbohydrate is dissolved into the aqueous solution and subsequently the water is removed to create a precipitate. In one aspect, the carbohydrate is sucrose. The precipitate is dehydrated and exposed to a thermal treatment of less than 1200 degrees C. to carbonize the carbohydrate. The result is the formation of a graphene-doped, carbohydrate-derived hard carbon (G-HC) composite. Typically, the G-HC composite is made up of graphene in the range of 0.1 and 20% by weight (wt %), and HC in the range of 80 to 99.9 wt %. The G-HC composite has a specific surface area of less than 10 square meters per gram (m2/g). A G-HC composite suitable for use in alkali metal-ion batteries electrodes is also provided.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 15, 2017
    Assignees: Oregon State University, Sharp Laboratories of America
    Inventors: Xiulei Ji, Wei Luo, Clement Bommier, Yuhao Lu, Sean Vail, Jong-Jan Lee