Patents by Inventor Jong-Jan Lee

Jong-Jan Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130260021
    Abstract: A structure of intimately contacting carbon-hexacyanometallate is provided for forming a metal-ion battery electrode. Several methods are provided for forming the carbon-hexacyanometallate intimate contact. These methods include (1) adding conducting carbon during the synthesis of hexacyanometallate and forming the carbon-hexacyanometallate powder prior to forming the paste for electrode printing; (2) coating with conducting carbon after hexacyanometallate powder formation and prior to forming the paste for electrode printing; and (3) coating a layer of conducting carbon over the hexacyanometallate electrode.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Jong-Jan Lee
  • Publication number: 20130257378
    Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
    Type: Application
    Filed: January 29, 2013
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
  • Publication number: 20130257389
    Abstract: A supercapacitor is provided with a method for fabricating the supercapacitor. The method provides dried hexacyanometallate particles having a chemical formula AmM1xM2y(CN)6.pH2O with a Prussian Blue hexacyanometallate, crystal structure, where A is an alkali or alkaline-earth cation, and M1 and M2 are metals with 2+ or 3+ valance positions. The variable m is in the range of 0.5 to 2, x is in the range of 0.5 to 1.5, y is in the range of 0.5 to 1.5, and p is in the range of 0 to 6. The hexacyanometallate particles are mixed with a binder and electronic conductor powder, to form a cathode comprising AmM1xM2y(CN)6.pH2O. The method also forms an activated carbon anode and a membrane separating the cathode from the anode, permeable to A and A? cations. Finally, an electrolyte is added with a metal salt including A? cations. The electrolyte may be aqueous.
    Type: Application
    Filed: September 4, 2012
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Sean Andrew Vail, Hidayat Kisdarjono, Jong-Jan Lee
  • Publication number: 20130260232
    Abstract: A battery structure is provided for making alkali ion and alkaline-earth ion batteries. The battery has a hexacyanometallate cathode, a non-metal anode, and non-aqueous electrolyte. A method is provided for forming the hexacyanometallate battery cathode and non-metal battery anode prior to the battery assembly. The cathode includes hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula A?n, AmM1xM2y(CN)6, and have a Prussian Blue hexacyanometallate crystal structure.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Jong-Jan Lee, Motoaki Nishijima, Seizoh Kakimoto
  • Publication number: 20130260260
    Abstract: A protected transition metal hexacyanoferrate (TMHCF) battery cathode is presented, made from AxMyFez(CN)n.mH2O particles, where the A cations are either alkali or alkaline-earth cations, and M is a transition metal. In one aspect the cathode passivation layer may be materials such as oxides, simple salts, carbonaceous materials, or polymers that form a film overlying the AxMyFez(CN)n.mH2O particles. In another aspect, the cathode passivation layer is a material such as oxygen, nitrogen, sulfur, fluorine, chlorine, or iodine that interacts with the AxMyFez(CN)n.mH2O particles, to cure defects in the AxMyFez(CN)n.mH2O crystal lattice structure. Also presented are TMHCF battery synthesis methods.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Jong-Jan Lee, David Evans
  • Publication number: 20130260222
    Abstract: A method is provided for forming a metal-ion battery electrode with large interstitial spacing. A working electrode with hexacyanometallate particles overlies a current collector. The hexacyanometallate particles have a chemical formula AmM1xM2y(CN)6·zH2O, and have a Prussian Blue hexacyanometallate crystal structure, where A is either alkali or alkaline-earth cations. M1 and M2 are metals with 2+ or 3+ valance positions. The working electrode is soaked in an organic first electrolyte including a salt including alkali or alkaline earth cations. A first electric field is created in the first electrolyte between the working electrode and a first counter electrode, causing A cations and water molecules to he simultaneously removed from interstitial spaces in the Prussian Blue hexacyanometallate crystal structure, forming hexacyanometallate particles having the chemical formula of Am?mM1xM2y(CN)6·z?H2O, where m?<m and z?<z, overlying the working electrode.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Jong-Jan Lee
  • Publication number: 20130122723
    Abstract: An ultraviolet treatment method is provided for a metal oxide electrode. A metal oxide electrode is exposed to an ultraviolet (UV) light source in a humid environment. The metal oxide electrode is then treated with a moiety having at least one anchor group, where the anchor group is a chemical group capable of promoting communication between the moiety and the metal oxide electrode. As a result, the moiety is bound to the metal oxide electrode. In one aspect the metal oxide electrode is treated with a photoactive moiety. Exposing the metal oxide electrode to the UV light source in the humid environment induces surface defects in the metal oxide electrode in the form of oxygen vacancies. In response to the humidity, atmospheric water competes favorably with oxygen for dissociative adsorption on the metal oxide electrode surface, and hydroxylation of the metal oxide electrode surface is induced.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Inventors: Sean Andrew VAIL, David R. EVANS, Wei PAN, Jong-Jan LEE
  • Patent number: 8288645
    Abstract: A back contact single heterojunction solar cell and associated fabrication process are provided. A first semiconductor substrate is provided, lightly doped with a first dopant type. The substrate has a first energy bandgap. A second semiconductor is formed over a region of the substrate backside. The second semiconductor has a second energy bandgap, larger than the first energy bandgap. A third semiconductor layer is formed over the first semiconductor substrate topside, moderately doped with the first dopant and textured. An emitter is formed in the substrate backside, heavily doped with a second dopant type, opposite of the first dopant type, and a base is formed in the substrate backside, heavily doped with the first dopant type. Electrical contacts are made to the base and emitter. Either the emitter or base is formed in the second semiconductor.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: October 16, 2012
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Paul J. Schuele, Steven R. Droes
  • Publication number: 20120211063
    Abstract: A back contact solar cell with organic semiconductor heterojunctions is provided. The substrate is made from silicon lightly doped with a first dopant type having a first majority carrier. A second semiconductor layer is formed overlying the texturized substrate topside, made from hydrogenated amorphous silicon (a-Si:H) and doped with the first dopant. An antireflective coating is formed overlying the second semiconductor layer. A third semiconductor layer is formed overlying the first semiconductor substrate backside, made from intrinsic a-Si:H. First and second majority carrier type organic semiconductor layers are formed overlying the third semiconductor layer in patterns. A dielectric organic semiconductor layer is formed overlying the first majority carrier type organic semiconductor layer and the second majority carrier type organic semiconductor layer, filling the spaces in the pattern.
    Type: Application
    Filed: August 23, 2011
    Publication date: August 23, 2012
    Inventors: Jong-Jan Lee, Paul J. Schuele
  • Publication number: 20120073635
    Abstract: A method is provided for forming a tandem dye-sensitized solar cell (DSC) using a bonding process. The method forms a first photovoltaic (PV) cell including a cathode, a first dye, and an anode. A second PV cell is also formed including a cathode, a second dye, and an anode. The second PV cell anode is bonded to the first PV cell cathode, at a temperature of less than 100 degrees C., using a transparent conductive adhesive. In response to the bonding, an internal series electrical connection is formed between the first PV cell and the second PV cell. In one aspect, the second PV cell is formed from a first titanium oxide (TiO2) nanotube (TNT) layer anode.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Inventors: Jong-Jan Lee, David R. Evans, Karen Yuri Nishimura, Sean Andrew Vail, Wei Pan
  • Patent number: 8106473
    Abstract: A germanium (Ge) photodiode array on a glass substrate is provided with a corresponding fabrication method. A Ge substrate is provided that is either not doped or lightly doped with a first dopant. The first dopant can be either an n or p type dopant. A first surface of the Ge substrate is moderately doped with the first dopant and bonded to a glass substrate top surface. Then, a first region of a Ge substrate second surface is heavily doped with the first dopant. A second region of the Ge substrate second surface is heavily doped with a second dopant, having the opposite electron affinity than the first dopant, forming a pn junction. An interlevel dielectric (ILD) layer is formed overlying the Ge substrate second surface and contact holes are etched in the ILD layer overlying the first and second regions of the Ge substrate second surface. The contact holes are filled with metal and metal pads are formed overlying the contact holes.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 31, 2012
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Steven R. Droes, John W. Hartzell, Jer-Shen Maa
  • Patent number: 8106426
    Abstract: A full color complementary metal oxide semiconductor (CMOS) imaging circuit is provided. The imaging circuit is made up of an array of photodiodes including a plurality of pixel groups. Each pixel group supplies 3 electrical color signals, corresponding to 3 detectable colors. A color filter array overlies the photodiode array employing less than 3 separate filter colors. Each pixel group may be enabled as a dual-pixel including a single photodiode (PD) to supply a first color signal and stacked PDs to supply a second and third color signal. In one aspect, the color filter array employs 1 filter color per pixel group. In another aspect, the color filter array employees 2 filter colors per pixel group. In either aspect, the color filter array forms a checkerboard pattern of color filter pixels. For example, a magenta color filter may overlie the stacked PDs of each dual-pixel, to name one variation.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: January 31, 2012
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Douglas J. Tweet, Jong-Jan Lee
  • Patent number: 8059178
    Abstract: A complementary metal oxide semiconductor (CMOS) imager flush reset circuit is provided. The flush reset circuit has an interface to receive first (e.g., VDD) and second (e.g., ground) reference voltages. The flush reset circuit has a solitary (flush) signal interface. There is also an interface connected to a transistor set power interface to supply a Vflush1 signal at least one threshold voltage different than the second reference voltage, in response to receiving a flush signal. The flush signal is used to create a CMOS imager hard reset prior to a soft reset.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: November 15, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee
  • Publication number: 20110163404
    Abstract: A germanium (Ge) photodiode array on a glass substrate is provided with a corresponding fabrication method. A Ge substrate is provided that is either not doped or lightly doped with a first dopant. The first dopant can be either an n or p type dopant. A first surface of the Ge substrate is moderately doped with the first dopant and bonded to a glass substrate top surface. Then, a first region of a Ge substrate second surface is heavily doped with the first dopant. A second region of the Ge substrate second surface is heavily doped with a second dopant, having the opposite electron affinity than the first dopant, forming a pn junction. An interlevel dielectric (ILD) layer is formed overlying the Ge substrate second surface and contact holes are etched in the ILD layer overlying the first and second regions of the Ge substrate second surface. The contact holes are filled with metal and metal pads are formed overlying the contact holes.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Inventors: Jong-Jan Lee, Steven R. Droes, John W. Hartzell, Jer-Shen Maa
  • Patent number: 7927909
    Abstract: A germanium (Ge) photodiode array on a glass substrate is provided with a corresponding fabrication method. A Ge substrate is provided that is either not doped or lightly doped with a first dopant. The first dopant can be either an n or p type dopant. A first surface of the Ge substrate is moderately doped with the first dopant and bonded to a glass substrate top surface. Then, a first region of a Ge substrate second surface is heavily doped with the first dopant. A second region of the Ge substrate second surface is heavily doped with a second dopant, having the opposite electron affinity than the first dopant, forming a pn junction. An interlevel dielectric (ILD) layer is formed overlying the Ge substrate second surface and contact holes are etched in the ILD layer overlying the first and second regions of the Ge substrate second surface. The contact holes are filled with metal and metal pads are formed overlying the contact holes.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: April 19, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Steven R. Droes, John W. Hartzell, Jer-Shen Maa
  • Patent number: 7915652
    Abstract: An integrated infrared (IR) and full color complementary metal oxide semiconductor (CMOS) imager array is provided. The array is built upon a lightly doped p doped silicon (Si) substrate. Each pixel cell includes at least one visible light detection pixel and an IR pixel. Each visible light pixel includes a moderately p doped bowl with a bottom p doped layer and p doped sidewalls. An n doped layer is enclosed by the p doped bowl, and a moderately p doped surface region overlies the n doped layer. A transfer transistor has a gate electrode overlying the p doped sidewalls, a source formed from the n doped layer, and an n+ doped drain connected to a floating diffusion region. The IR pixel is the same, except that there is no bottom p doped layer. An optical wavelength filter overlies the visible light and IR pixels.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 29, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Douglas J. Tweet, Jon M. Speigle
  • Patent number: 7906825
    Abstract: A germanium (Ge) short wavelength infrared (SWIR) imager and associated fabrication process are provided. The imager comprises a silicon (Si) substrate with doped wells. An array of pin diodes is formed in a relaxed Ge-containing film overlying the Si substrate, each pin diode having a flip-chip interface. There is a Ge/Si interface, and a doped Ge-containing buffer interposed between the Ge-containing film and the Ge/Si interface. An array of Si CMOS readout circuits is bonded to the flip-chip interfaces. Each readout circuit has a zero volt diode bias interface.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: March 15, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Douglas J. Tweet, Jer-Shen Maa, Jong-Jan Lee, Sheng Teng Hsu
  • Publication number: 20100276776
    Abstract: A germanium (Ge) photodiode array on a glass substrate is provided with a corresponding fabrication method. A Ge substrate is provided that is either not doped or lightly doped with a first dopant. The first dopant can be either an n or p type dopant. A first surface of the Ge substrate is moderately doped with the first dopant and bonded to a glass substrate top surface. Then, a first region of a Ge substrate second surface is heavily doped with the first dopant. A second region of the Ge substrate second surface is heavily doped with a second dopant, having the opposite electron affinity than the first dopant, forming a pn junction. An interlevel dielectric (ILD) layer is formed overlying the Ge substrate second surface and contact holes are etched in the ILD layer overlying the first and second regions of the Ge substrate second surface. The contact holes are filled with metal and metal pads are formed overlying the contact holes.
    Type: Application
    Filed: May 1, 2009
    Publication date: November 4, 2010
    Inventors: Jong-Jan Lee, Steven R. Droes, John W. Hartzell, Jer-Shen Maa
  • Patent number: 7816170
    Abstract: A dual-pixel full color CMOS imager comprises a two-photodiode stack including an n doped substrate, a bottom photodiode, and a top photodiode. The bottom photodiode has a bottom p doped layer at a first depth overlying the substrate and a bottom n doped layer cathode overlying the bottom p doped layer. The top photodiode has a top p doped layer overlying the bottom n doped layer and a top n doped layer cathode overlying the top p doped layer. A single photodiode including a bottom p doped layer overlies the substrate at a third depth. The third depth is less than, or equal to the first depth. A bottom n doped layer overlies the bottom p doped layer, a top p doped layer directly overlies the bottom n doped layer without an intervening layer, and a top n doped layer overlies the top p doped layer.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: October 19, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Jon M. Speigle, Douglas J. Tweet
  • Patent number: 7811913
    Abstract: A method of fabricating a low, dark-current germanium-on-silicon PIN photo detector includes preparing a P-type silicon wafer; implanting the P-type silicon wafer with boron ions; activating the boron ions to form a P+ region on the silicon wafer; forming a boron-doped germanium layer on the P+ silicon surface; depositing an intrinsic germanium layer on the boron-doped germanium layer; cyclic annealing, including a relatively high temperature first anneal step and a relatively low temperature second anneal step; repeating the first and second anneal steps for about twenty cycles, thereby forcing crystal defects to the P+ germanium layer; implanting ions in the surface of germanium layer to form an N+ germanium surface layer and a PIN diode; activating the N+ germanium surface layer by thermal anneal; and completing device according to known techniques to form a low dark-current germanium-on-silicon PIN photodetector.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: October 12, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Douglas J. Tweet, Jer-Shen Maa, Sheng Teng Hsu