Patents by Inventor Jong-Kae Fwu

Jong-Kae Fwu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11510187
    Abstract: Methods and apparatus are described for transmitting uplink control information (UCI) over an OFDMA-based uplink. In some embodiments, UCI symbols are mapped to resource elements (REs) in the time/frequency resource grid to maximize frequency diversity. In some embodiments, UCI is mapped in a manner that takes into account channel estimation performance by mapping UCI symbols to those REs that are closest (in terms of OFDM subcarriers/symbols) to REs that carry reference signals.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: November 22, 2022
    Assignee: Apple Inc.
    Inventors: Ralf Matthias Bendlin, Gang Xiong, Jong-Kae Fwu, Hong He, Yushu Zhang, Seunghee Han, Yuan Zhu
  • Publication number: 20220353650
    Abstract: Disclosed herein is a communication device for vehicular radio communications. The communication device includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices. The one or more processors also determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology. The one or more processors also transmit the channel resource allocation to the plurality of vehicular communication devices.
    Type: Application
    Filed: November 26, 2021
    Publication date: November 3, 2022
    Inventors: Carlos ALDANA, Biljana BADIC, Dave CAVALCANTI, Debabani CHOUDHURY, Christian DREWES, Jong-Kae FWU, Bertram GUNZELMANN, Nageen HIMAYAT, Ingolf KARLS, Duncan KITCHIN, Markus Dominik MUECK, Bernhard RAAF, Domagoj SIPRAK, Harry SKINNER, Christopher STOBART, Shilpa TALWAR, Zhibin YU
  • Publication number: 20220353652
    Abstract: A communication device for multi-radio access technology (RAT) communications includes one or more processors and a plurality of transceivers. Each transceiver is configured to operate in at least one RAT of a plurality of RATs. The processors are configured to establish connection with a second communication device using a first transceiver of the plurality of transceivers and a first RAT of the plurality of RATs. A first data stream associated with a communication link connected to the second communication device and a third communication device is receive via a convergence function at the second communication device. The communication link uses a second RAT of the plurality of RATs. A code sequence is applied to a second data stream to generate an encoded second data stream, which is transmitted to the third communication device via a second communication link established based on information received via the first data stream.
    Type: Application
    Filed: February 23, 2022
    Publication date: November 3, 2022
    Inventors: Stefan Fechtel, Kilian Peter Anton Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Publication number: 20220352943
    Abstract: Disclosed herein are apparatuses, systems, and methods using or implementing dynamic beamforming in control channels, by transmitting downlink control channels to user equipment (UEs) in a number of orthogonal frequency division multiplexing (OFDM) symbols of a downlink subframe. A first OFDM symbol of the number of OFDM symbols can be transmitted using first beamforming parameters in a first direction, and a second OFDM symbol of the number of OFDM symbols can be transmitted using second beamforming parameters different from the first beamforming parameters and in a second direction different from the first direction. The number of OFDM symbols used, as well as other parameters, can be dynamically adjusted in subsequent subframes. Other embodiments are described.
    Type: Application
    Filed: July 7, 2022
    Publication date: November 3, 2022
    Inventors: Huaning Niu, Hyejung Jung, Gang Xiong, Yushu Zhang, Hooman Shirani-Mehr, Yuan Zhu, Jong-Kae Fwu
  • Publication number: 20220353954
    Abstract: Technology for an eNodeB to communicate with a user equipment (UE) using a self-contained time division duplex (TDD) subframe within a wireless communication network is disclosed. The eNodeB can process, for transmission to the UE, a DL self-contained time division duplex (TDD) subframe comprising an extended physical downlink shared channel (xPDSCH), an extended physical downlink control channel (xPDCCH), a downlink (DL) spacing signal, and a guard period, wherein the xPDSCH, the xPDCCH, the DL spacing signal, and the guard time are located within the DL self-contained TDD subframe prior to an extended physical uplink control channel (xPUCCH). The eNodeB can process, an uplink (UL) self-contained TDD subframe, received from the UE, having a UL spacing signal located after an extended physical uplink shared channel (xPUSCH).
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: GANG XIONG, HUANING NIU, HONG HE, JONG-KAE FWU
  • Patent number: 11490457
    Abstract: Technology for an eNodeB to communicate with a user equipment (UE) using a self-contained time division duplex (TDD) subframe within a wireless communication network is disclosed. The eNodeB can process, for transmission to the UE, a DL self-contained time division duplex (TDD) subframe comprising an extended physical downlink shared channel (xPDSCH), an extended physical downlink control channel (xPDCCH), a downlink (DL) spacing signal, and a guard period, wherein the xPDSCH, the xPDCCH, the DL spacing signal, and the guard time are located within the DL self-contained TDD subframe prior to an extended physical uplink control channel (xPUCCH). The eNodeB can process, an uplink (UL) self-contained TDD subframe, received from the UE, having a UL spacing signal located after an extended physical uplink shared channel (xPUSCH).
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: November 1, 2022
    Assignee: APPLE INC.
    Inventors: Gang Xiong, Huaning Niu, Hong He, Jong-Kae Fwu
  • Publication number: 20220256520
    Abstract: An eNodeB (eNB), user equipment (UE) and method of providing a flexible Radio Access Technology (FRAT) are generally described. The information (resource allocation, partition information and numerology) of at least one of a plurality of RATs used by the eNB is provided to a UE. Each RAT has a flexible subcarrier spacing and symbol duration, which are integer multiples of a base subcarrier spacing and symbol duration, and is associated with at least one of different temporal and frequency resources. The symbol and/or frame structure of each RAT are independent. A Transmission Time Interval (TTI) boundary between the RATs is common, and the RATs comprise a common reference TTI duration. The information of the RATs is provided either via a different RAT than the RAT used by the UE for communication or via a dedicated carrier in the RAT used by the UE for communication.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 11, 2022
    Inventors: Jong-Kae Fwu, Gang Xiong
  • Publication number: 20220247540
    Abstract: Briefly, in accordance with one or more embodiments, apparatus of an evolved NodeB (eNB) comprises circuitry to configure one or more parameters for a 5G master information block (xMIB). The xMIB contains at least one of the following parameters: downlink system bandwidth, system frame number (SFN), or configuration for other physical channels, or a combination thereof. The apparatus of the eNB comprises circuitry to transmit the xMIB via a 5G physical broadcast channel (xPBCH) on a predefined resource, the xPBCH comprising a xPBCH. The xPBCH may use a DM-RS based transmission mode, and a beamformed xPBCH may be used for mid band and high band.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Inventors: Gang XIONG, Hyejung JUNG, Ralf BENDLIN, Jong-Kae FWU, Alexei DAVYDOV
  • Publication number: 20220201799
    Abstract: Devices for and methods of providing low latency 5G FDD communications are generally described. A HARQ ACK/NACK for an xPDSCH is transmitted in the xPUCCH of the same or next subframe as the xPDSCH and xPDCCH. An xPUSCH is generated in the same subframe in response to an xPDCCH and HARQ ACK/NACK response is carried by another xPDCCH or xPHICH in the same or next sub frame. The xPDCCH and the xPUCCH are at opposite ends of the same subframe, DL and UL subframe are delayed relative to each other, or at least one of the DL and UL subframe has an additional blank portion, portion with data associated with another UE or portion that contains a reference signal, broadcast signal or control information.
    Type: Application
    Filed: March 11, 2022
    Publication date: June 23, 2022
    Inventors: Gang Xiong, Glenn J. Bradford, Yushu Zhang, Jong-Kae Fwu, Yuan Zhu
  • Patent number: 11343048
    Abstract: Briefly, in accordance with one or more embodiments, apparatus of an evolved NodeB (eNB) comprises circuitry to configure one or more parameters for a 5G master information block (xMIB). The xMIB contains at least one of the following parameters: downlink system bandwidth, system frame number (SFN), or configuration for other physical channels, or a combination thereof. The apparatus of the eNB comprises circuitry to transmit the xMIB via a 5G physical broadcast channel (xPBCH) on a predefined resource, the xPBCH comprising a xPBCH. The xPBCH may use a DM-RS based transmission mode, and a beamformed xPBCH may be used for mid band and high band.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 24, 2022
    Assignee: Apple Inc.
    Inventors: Gang Xiong, Hyejung Jung, Ralf Bendlin, Jong-Kae Fwu, Alexei Davydov
  • Publication number: 20220159632
    Abstract: Embodiments described herein relate generally to a communication between a user equipment (UE) and an evolved Node B (eNB). The UE and eNB may perform enhanced physical downlink control channel (EPDCCH)-less operation for scheduling of one or more common control messages, such as one or more system information blocks (SIBs), a random access response (RAR) message, or a paging message. Additionally, or alternatively, an eNB may configure a subset of aggregation levels for the search space of the UE to use for receiving a physical downlink control channel (PDCCH) or enhanced PDCCH (EPDCCH). Other embodiments may be described and/or claimed.
    Type: Application
    Filed: November 29, 2021
    Publication date: May 19, 2022
    Inventors: Gang Xiong, Seunghee Han, Debdeep Chatterjee, Jong-Kae Fwu
  • Patent number: 11336348
    Abstract: User Equipment (UE) and base station (eNB) apparatus and methodology for adjusting receive beamforming. A beam refinement reference signal (BRRS) is transmitted with the same transmit beam direction on which data is to be transmitted. While receiving the BRRS, the receiver varies its receive beam direction and measures a signal characteristic of reception of the BRRS to determine a refined receive beam direction. The refined receive beam direction is used to receive the data.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 17, 2022
    Assignee: Apple Inc.
    Inventors: Wenting Chang, Yushu Zhang, Yuan Zhu, Huaning Niu, Jong-Kae Fwu
  • Patent number: 11324076
    Abstract: Embodiments include apparatuses, methods, and systems that may be used in a UE in a mobile communication network to communicate with a gNB. An apparatus may include a memory and processing circuitry coupled with the memory. The processing in circuitry may cause coarse time and frequency synchronization information, obtained from primary and secondary synchronization signals (PSS/SSS), to be stored in the memory. Based on the coarse time and frequency synchronization information, the processing circuitry may decode a physical broadcast channel to obtain a first system information, and may acquire a second system information based on the first system information. Based on the first and second system information, the processing circuitry may cause a transmission of a PRACH, to trigger a transmission of a TRS by the gNB. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 3, 2022
    Assignee: Apple Inc.
    Inventors: Gang Xiong, Ralf Bendlin, Alexei Davydov, Yushu Zhang, Sameer Pawar, Wook Bong Lee, Jong-Kae Fwu
  • Patent number: 11317403
    Abstract: An eNodeB (eNB), user equipment (UE) and method of providing a flexible Radio Access Technology (FRAT) are generally described. The information (resource allocation, partition information and numerology) of at least one of a plurality of RATs used by the eNB is provided to a UE. Each RAT has a flexible subcarrier spacing and symbol duration, which are integer multiples of a base subcarrier spacing and symbol duration, and is associated with at least one of different temporal and frequency resources. The symbol and/or frame structure of each RAT are independent. A Transmission Time Interval (TTI) boundary between the RATs is common, and the RATs comprise a common reference TTI duration. The information of the RATs is provided either via a different RAT than the RAT used by the UE for communication or via a dedicated carrier in the RAT used by the UE for communication.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: April 26, 2022
    Assignee: Apple Inc.
    Inventors: Jong-Kae Fwu, Gang Xiong
  • Patent number: 11304037
    Abstract: Systems, devices, and techniques for V2X communications using multiple radio access technologies (RATs) are described herein. A communication associated with one or more of the multiple RATs may be received at a device. The device may include a transceiver interface with multiple connections to communicate with multiple transceiver chains. The multiple transceiver chains can be configured to support multiple RATs. Additionally, the multiple transceiver chains may be controlled via the multiple connections of the transceiver interface to coordinate the multiple RATs to complete the communication.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: April 12, 2022
    Assignee: Intel Corporation
    Inventors: Stefan Fechtel, Kilian Peter Anton Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Patent number: 11291079
    Abstract: Devices for and methods of providing low latency 5G FDD communications are generally described. A HARQ ACK/NACK for an xPDSCH is transmitted in the xPUCCH of the same or next subframe as the xPDSCH and xPDCCH. An xPUSCH is generated in the same subframe in response to an xPDCCH and HARQ ACK/NACK response is carried by another xPDCCH or xPHICH in the same or next subframe. The xPDCCH and the xPUCCH are at opposite ends of the same subframe, DL and UL subframe are delayed relative to each other, or at least one of the DL and UL subframe has an additional blank portion, portion with data associated with another UE or portion that contains a reference signal, broadcast signal or control information.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 29, 2022
    Assignee: Apple Inc.
    Inventors: Gang Xiong, Glenn J. Bradford, Yushu Zhang, Jong-Kae Fwu, Yuan Zhu
  • Publication number: 20220085962
    Abstract: Systems, methods, and baseband processors are provided to generate or process symbols in a synchronization subframe. In one example, a method includes selecting non-consecutive orthogonal frequency division multiplexing (OFDM) symbols in a synchronization subframe. A transmitter is instructed to transmit demodulation reference symbols (DM-RS) on identical first sets of subcarriers in respective OFDM symbols of the selected non-consecutive OFDM symbols for a Physical Broadcast Channel (PBCH) using a same transmit beam, wherein a gap between two subcarriers in a respective set of the identical first sets of subcarriers is three subcarriers. The transmitter is instructed to transmit the PBCH on identical second sets of subcarriers in respective OFDM symbols in the selected non-consecutive OFDM symbols.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Peng Lu, Qiaoyang Ye, Gang Xiong, Glenn J. Bradford, Joonyoung Cho, Jong-Kae Fwu, Bishwarup Mondal
  • Publication number: 20220029870
    Abstract: An apparatus and system to compensate for phase noise in a 5G or 6G DFT-S-OFDM signal are described. An access port (AP)-specific orthogonal cover code (OCC) is applied to phase tracking reference signal (PTRS) symbols in each of a plurality of PTRS groups. The PTRS group are inserted between data symbols to form a data vector prior to perform transform precoding, on the data vector and transmission to a UE. The UE extracts the PTRS symbols from different PTRS APs using the OCC specific to each AP. After extraction, the phase noise for each PTRS group is estimated and used to compensate the data symbols associated with the PTRS group.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Inventors: Peng Lu, Alexei Davydov, Jong-Kae Fwu, Sungho Moon, Xiangyang Zhuang
  • Patent number: 11228880
    Abstract: A communication device for a vehicular radio communications includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices, determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology, and transmit the channel resource allocation to the plurality of vehicular communication devices.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: January 18, 2022
    Assignee: INTEL CORPORATION
    Inventors: Carlos Aldana, Dave Cavalcanti, Debabani Choudhury, Jong-Kae Fwu, Bertram Gunzelmann, Nageen Himayat, Ingolf Karls, Duncan Kitchin, Markus Dominik Mueck, Harry Skinner, Christopher Stobart, Shilpa Talwar, Zhibin Yu
  • Publication number: 20220006498
    Abstract: Apparatus, systems, and methods to implement receive beamforming in communication systems are described. In one example, apparatus of an evolved Node B (eNB) comprising processing circuitry to receive, from a user equipment (UE), a beamforming reference signal received power (BRS-RP) measurement and in response to the BRS-RP measurement, configure a downlink (DL) transmit (Tx) beamforming and a receiving (Rx) beamforming process on the UE. Other examples are also disclosed and claimed.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Applicant: Apple Inc.
    Inventors: Yushu Zhang, Yuan Zhu, Gang Xiong, Ralf Bendlin, Jong-Kae Fwu