Patents by Inventor Jong Kyo Choi

Jong Kyo Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250034671
    Abstract: According to one aspect of the present invention, an austenitic high-manganese steel having excellent ultra-low temperature toughness in a weld heat-affected cone, and a manufacturing method therefor can be provided.
    Type: Application
    Filed: December 20, 2022
    Publication date: January 30, 2025
    Applicant: POSCO CO., LTD
    Inventors: Soon-Gi LEE, Jong-Kyo CHOI, Sang-Deok KANG
  • Patent number: 11155906
    Abstract: The present invention relates to pressure vessel steel to be used in a hydrogen sulfide atmosphere, and relates to pressure vessel steel having excellent resistance to hydrogen induced cracking (HIC), and a manufacturing method therefor.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: October 26, 2021
    Assignee: POSCO
    Inventors: Dae-Woo Kim, Jong-Kyo Choi, Young-Jin Jung
  • Patent number: 11155905
    Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: October 26, 2021
    Assignees: ExxonMobil Research and Engineering Company, POSCO
    Inventors: Hyunwoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
  • Patent number: 10655196
    Abstract: Provided are an austenitic steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone including 15 wt % to 35 wt % of manganese (Mn), carbon (C) satisfying 23.6C+Mn?28 and 33.5C?Mn?23, 5 wt % or less (excluding 0 wt %) of copper (Cu), chromium (Cr) satisfying 28.5C+4.4Cr?57 (excluding 0 wt %), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Charpy impact value of a weld heat-affected zone at ?196° C. is 41 J or more, and a method of manufacturing the steel. According to the present invention, a low-cost ultra-low temperature steel may be obtained, a stable austenite phase may be formed at low temperature, carbide formation may be effectively suppressed, and a structural steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone may be provided.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 19, 2020
    Assignee: POSCO
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Young-Hwan Park, Hee-Goon Noh, Hyun-Kwan Cho, In-Shik Suh, In-Gyu Park, Hong-Ju Lee
  • Publication number: 20190264306
    Abstract: The present invention relates to pressure vessel steel to be used in a hydrogen sulfide atmosphere, and relates to pressure vessel steel having excellent resistance to hydrogen induced cracking (HIC), and a manufacturing method therefor.
    Type: Application
    Filed: November 3, 2017
    Publication date: August 29, 2019
    Inventors: Dae-Woo KIM, Jong-Kyo CHOI, Young-Jin JUNG
  • Publication number: 20180258515
    Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 13, 2018
    Inventors: Hyunwoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
  • Patent number: 9708698
    Abstract: Provided is a wear resistant steel including 2.6 wt % to 4.5 wt % of manganese (Mn), carbon (C) satisfying (6-Mn)/50?C?(10-Mn)/50, 0.05 wt % to 1.0 wt % of silicon (Si), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Brinell hardness of a surface portion is in a range of 360 to 440. The wear resistant steel further includes at least one component selected from the group consisting of 0.1 wt % or less (excluding 0 wt %) of niobium (Nb), 0.1 wt % or less (excluding 0 wt %) of vanadium (V), 0.1 wt % or less (excluding 0 wt %) of titanium (Ti), and 0.02 wt % or less (excluding 0 wt %) of boron (B) to complement the performance thereof. The wear resistant steel is characterized in that a microstructure includes martensite in an amount of 90% or more, and an average packet diameter of the martensite is 20 ?m or less.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: July 18, 2017
    Assignee: POSCO
    Inventors: Jong-Kyo Choi, Woo-Kil Jang, Young-Hwan Park, Hong-Ju Lee
  • Patent number: 9650703
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 16, 2017
    Assignee: POSCO
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hong-Ju Lee, In-Shik Suh, In-Gyu Park
  • Patent number: 9394579
    Abstract: The present invention provides steel containing manganese and nickel that is used as a structural material for a cryogenic storage container for liquefied natural gas (LNG) or the like, and a manufacturing method thereof; and more particularly, to steel having good cryogenic temperature toughness and also high strength by adding low-cost Mn instead of relatively expensive Ni at an optimized ratio, refining a microstructure through controlled rolling and cooling, and precipitating retained austenite through tempering, and a manufacturing method of the steel. To achieve the object, the technical feature of the present invention is a method of manufacturing high-strength steel with cryogenic temperature toughness. In the method, a steel slab is heated to a temperature within a range of 1,000 to 1,250° C., wherein the steel slab includes, by weight: 0.01-0.06% of carbon (C), 2.0-8.0% of manganese (Mn), 0.01-6.0% of nickel (Ni), 0.02-0.6% of molybdenum (Mo), 0.03-0.5% of silicon (Si), 0.003-0.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 19, 2016
    Assignee: POSCO
    Inventors: Kyung-Keun Um, Jong-Kyo Choi, Woo-Kil Jang, Hee-Goon Noh, Hyun-Kwan Cho
  • Publication number: 20150020928
    Abstract: Provided are an austenitic steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone including 15 wt % to 35 wt % of manganese (Mn), carbon (C) satisfying 23.6C+Mn?28 and 33.5C?Mn?23, 5 wt % or less (excluding 0 wt %) of copper (Cu), chromium (Cr) satisfying 28.5C+4.4Cr?57 (excluding 0 wt %), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Charpy impact value of a weld heat-affected zone at ?196° C. is 41 J or more, and a method of manufacturing the steel. According to the present invention, a low-cost ultra-low temperature steel may be obtained, a stable austenite phase may be formed at low temperature, carbide formation may be effectively suppressed, and a structural steel having excellent machinability and ultra-low temperature toughness in a weld heat-affected zone may be provided.
    Type: Application
    Filed: December 27, 2012
    Publication date: January 22, 2015
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Young-Hwan Park, Hee-Goon Noh, Hyun-Kwan Cho, In-Shik Suh, In-Gyu Park, Hong-Ju Lee
  • Publication number: 20140373588
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 25, 2014
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hong-Ju Lee, In-Shik Suh, In-Gyu Park
  • Publication number: 20140356220
    Abstract: There are provided a wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones and a method for producing the austenitic steel. The austenitic steel includes, by weight %, manganese (Mn): 15% to 25%, carbon (C): 0.8% to 1.8%, copper (Cu) satisfying 0.7C-0.56(%)?Cu?5%, and the balance of iron (Fe) and inevitable impurities, wherein the weld heat affected zones have a Charpy impact value of 100 J or greater at ?40° C. The toughness of the austenitic steel is not decreased in weld heat affected zones because the formation of carbides during welding is suppressed, and the machinability of the austenitic steel is improved so that a cutting process may be easily performed on the austenitic steel. The corrosion resistance of the austenitic steel is improved so that the austenitic steel may be used for an extended period of time in corrosive environments.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 4, 2014
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hee-Goon Noh, Hyun-Kwan Cho, In-Shik Suh, Hak-Cheol Lee, In-Gyu Park, Hong-Ju Lee
  • Publication number: 20140334967
    Abstract: Provided is a wear resistant steel including 2.6 wt % to 4.5 wt % of manganese (Mn), carbon (C) satisfying (6-Mn)/50?C?(10-Mn)/50, 0.05 wt % to 1.0 wt % of silicon (Si), and iron (Fe) as well as other unavoidable impurities as a remainder, wherein a Brinell hardness of a surface portion is in a range of 360 to 440. The wear resistant steel further includes at least one component selected from the group consisting of 0.1 wt % or less (excluding 0 wt %) of niobium (Nb), 0.1 wt % or less (excluding 0 wt %) of vanadium (V), 0.1 wt % or less (excluding 0 wt %) of titanium (Ti), and 0.02 wt % or less (excluding 0 wt %) of boron (B) to complement the performance thereof. The wear resistant steel is characterized in that a microstructure includes martensite in an amount of 90% or more, and an average packet diameter of the martensite is 20 ?m or less.
    Type: Application
    Filed: December 27, 2012
    Publication date: November 13, 2014
    Inventors: Jong-Kyo Choi, Woo-Kil Jang, Young-Hwan Park, Hong-Ju Lee
  • Publication number: 20140261918
    Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: HyunWoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
  • Patent number: 8702880
    Abstract: A high strength and low yield ratio steel that has excellent characteristics such as low temperature toughness, a tensile strength of approximately 600 MPa or more and a low yield ratio of 80% or less. The high strength and low yield ratio steel includes, by weight percent: C: 0.02 to 0.12%, Si: 0.01 to 0.8%, Mn: 0.3 to 2.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.5%, Nb: 0.005 to 0.10%, B: 3 to 50 ppm, Ti: 0.005 to 0.1%, N: 15 to 150 ppm, Ca: 60 ppm or less, and the balance of be and inevitable impurities, and further includes at least one component selected from the group consisting of by weight percent: Cr: 0.05 to 1.0%, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: 0.01 to 1.0% and V: 0.005 to 0.3%, wherein a finish cooling temperature is limited to 500 to 600° C. after the finish-rolling process.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 22, 2014
    Assignee: Posco
    Inventors: Jae Young Cho, Kyung Keun Um, Jong Kyo Choi
  • Publication number: 20130174941
    Abstract: The present invention provides steel containing manganese and nickel that is used as a structural material for a cryogenic storage container for liquefied natural gas (LNG) or the like, and a manufacturing method thereof; and more particularly, to steel having good cryogenic temperature toughness and also high strength by adding low-cost Mn instead of relatively expensive Ni at an optimized ratio, refining a microstructure through controlled rolling and cooling, and precipitating retained austenite through tempering, and a manufacturing method of the steel. To achieve the object, the technical feature of the present invention is a method of manufacturing high-strength steel with cryogenic temperature toughness. In the method, a steel slab is heated to a temperature within a range of 1,000 to 1,250° C., wherein the steel slab includes, by weight: 0.01-0.06% of carbon (C), 2.0-8.0% of manganese (Mn), 0.01-6.0% of nickel (Ni), 0.02-0.6% of molybdenum (Mo), 0.03-0.5% of silicon (Si), 0.003-0.
    Type: Application
    Filed: November 21, 2011
    Publication date: July 11, 2013
    Applicant: POSCO
    Inventors: Kyung-Keun Um, Jong-Kyo Choi, Woo-Kil Jang, Hee-Goon Noh, Hyun-Kwan Cho
  • Publication number: 20120288396
    Abstract: Provided is an austenite steel having excellent ductility including 8 wt % to 15 wt % of manganese (Mn), 3 wt % or less (excluding 0 wt %) of copper (Cu), a content of carbon (C) satisfying relationships of 33.5C+Mn?25 and 33.5C?Mn?23, and iron (Fe) as well as unavoidable impurities as a remainder. According to an aspect, austenite is stabilized and generation of carbides in a network form at austenite grain boundaries is inhibited by adding copper (Cu) favorable to inhibition of carbide formation with respect to manganese and appropriately controlling contents of carbon and manganese, and thus, high economic efficiency may also be achieved while ductility and wear resistance are improved.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 15, 2012
    Applicant: POSCO
    Inventors: Soon-Gi Lee, Jong-Kyo Choi, Hyun-Kwan Cho, Hee-Goon Noh
  • Publication number: 20100263773
    Abstract: A high strength and low yield ratio steel that has excellent characteristics such as low temperature toughness, a tensile strength of approximately 600 MPa or more and a low yield ratio of 80% or less. The high strength and low yield ratio steel includes, by weight percent: C: 0.02 to 0.12%, Si: 0.01 to 0.8%, Mn: 0.3 to 2.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.5%, Nb: 0.005 to 0.10%, B: 3 to 50 ppm, Ti: 0.005 to 0.1%, N: 15 to 150 ppm, Ca: 60 ppm or less, and the balance of be and inevitable impurities, and further includes at least one component selected from the group consisting of by weight percent: Cr: 0.05 to 1.0%, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: 0.01 to 1.0% and V: 0.005 to 0.3%, wherein a finish cooling temperature is limited to 500 to 600° C. after the finish-rolling process.
    Type: Application
    Filed: September 12, 2008
    Publication date: October 21, 2010
    Applicant: POSCO
    Inventors: Jae Young Cho, Kyung Keun Um, Jong Kyo Choi