Patents by Inventor Jongheon Jeong

Jongheon Jeong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220149958
    Abstract: An electronic device using a millimeter wave, according to various embodiments, includes a communication circuit and at least one processor. The at least one processor can be configured to: control the communication circuit so that a first millimeter wave signal is output at a first strength; use the communication circuit so that the first millimeter wave signal receives a first reflection signal reflected by an object; confirm whether the object is positioned within a first distance from the electronic device; determine the strength of a second millimeter wave signal to be a second strength corresponding to a second distance between the electronic device and the object, the second distance being shorter than the first distance; and control the communication circuit so that the second millimeter wave signal is output at the determined second strength.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Junghun LEE, Chiho KIM, Hyunkee MIN, Taehun LIM, Junsu CHOI, Haekwon LEE, Jongheon JEONG, Sunkey LEE
  • Patent number: 9453870
    Abstract: In an apparatus relating generally to an IC die, the IC die has a regulated power supply, a power supply grid, and a test circuit. The regulated power supply is biased between a source supply node and a source ground node, which are externally accessible nodes of the IC die. An internal supply node of the power supply grid is coupled to the regulated power supply. The test circuit is coupled to the internal supply node of the power supply grid. The test circuit is configured to test for at least one short in the power supply grid. The test circuit is configured to limit power through the power supply grid to less than that of a probe tip tolerance. The test circuit is configured to test for the at least one short in presence of background current leakage of the power supply grid.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: September 27, 2016
    Assignee: XILINX, INC.
    Inventors: Amitava Majumdar, Richard W. Swanson, Anna W. Wong, Suraj Ethirajan, Asim A. Bajwa, Jongheon Jeong
  • Patent number: 9012245
    Abstract: In the disclosed methods, integrated circuit (IC) dice are manufactured from a common specification, and the IC dice are tested for defective circuitry. Respective defect sets are generated to indicate defective circuitry in the IC die. The dice are assigned to bins based on the respective defect sets. For each bin, all IC dice assigned to the bin have equivalent respective defect sets. Product definitions are provided, and each product definition indicates a respective set of circuitry required for a corresponding product. Respective sets of packages are manufactured for each product. In the manufacturing of each package of a respective set of packages for each product, one or more IC dice are selected from a subset of the plurality of bins such that the IC dice have respective defect sets allowed by the product definition of the product. The selected IC dice are then manufactured into the package.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: April 21, 2015
    Assignee: Xilinx, Inc.
    Inventors: Matthew H. Klein, Robert W. Wells, Jongheon Jeong
  • Patent number: 8212576
    Abstract: Method and apparatus for self-regulated burn-in of an integrated circuit (IC) is described. One embodiment of a method of burn-in for the IC includes: configuring programmable resources of the IC device based on a burn-in pattern to implement a load controller, the load controller having a plurality of heat core circuits. The load controller is initialized with a number of enabled heat core circuits of the plurality of heat core circuits. A junction temperature is measured in the IC device after a measurement period has elapsed. The junction temperature is compared with a set-point temperature. The number of the enabled heat core circuits is increased if the junction temperature is less than the set-point temperature, or the number of the enabled heat core circuits is decreased if the junction temperature is greater than the set-point temperature.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: July 3, 2012
    Assignee: Xilinx, Inc.
    Inventors: Jae Cho, Glenn O'Rourke, Michael M. Matera, Jongheon Jeong
  • Patent number: 7687797
    Abstract: A MOS transistor is used as a programmable three-terminal non-volatile memory element. The gate dielectric layer of the MOS transistor has a first portion with a relatively higher dielectric breakdown strength than a second portion. The location of the second portion is chosen so as to avoid having the gate dielectric layer break down near the edge of the active area or isolation area during programming. In a particular embodiment, the gate dielectric layer is silicon oxide, and the first portion is thicker than the second portion.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: March 30, 2010
    Assignee: Xilinx, Inc.
    Inventors: James Karp, Daniel Gitlin, Shahin Toutounchi, Michael G. Ahrens, Jongheon Jeong
  • Patent number: 7544968
    Abstract: An MOS transistor is programmed in a non-volatile memory cell. A storage capacitor in the non-volatile memory cell is used to enhance programming efficiency by providing additional charge to the programming terminal of the MOS transistor during breakdown of the gate dielectric, thus avoiding soft programming faults. In a particular embodiment the storage capacitor is a second MOS transistor having a thicker gate dielectric layer than the dielectric layer of the programmable MOS transistor.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: June 9, 2009
    Assignee: Xilinx, Inc.
    Inventors: Shahin Toutounchi, James Karp, Jongheon Jeong, Michael G. Ahrens, Michael J. Hart
  • Patent number: 7450431
    Abstract: A PMOS transistor is programmed as a non-volatile memory element by operating the PMOS transistor in accumulation mode. This facilitates merging the source and drain regions to form a low-resistance path because most heating occurs on the channel side of the gate dielectric, rather than on the gate terminal side. In a particular embodiment, boron is used as the dopant. Boron has a higher diffusivity than arsenic or phosphorous, which are typical n-type dopants. Boron's higher diffusivity promotes merging the source and drain regions.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: November 11, 2008
    Assignee: Xilinx, Inc.
    Inventors: James Karp, Jongheon Jeong, Michael G. Ahrens, Shahin Toutounchi
  • Patent number: 7420842
    Abstract: A storage transistor is programmed as a non-volatile memory element by biasing the source and drain while a programming voltage is applied to the gate. The substrate is held at a different potential than the source/drain to insure that the greatest difference in voltage during the programming step occurs between the channel region and the gate, rather than the gate and the source/drain. The programming voltage heats the channel region to form a non-volatile low-resistance connection between the source and drain, which is read to determine the programmed state.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: September 2, 2008
    Assignee: Xilinx, Inc.
    Inventors: Michael G. Ahrens, Shahin Toutounchi, James Karp, Jongheon Jeong
  • Patent number: 6740936
    Abstract: A transistor with ballast resistor formed between the transistor drain and the drain contact is formed by masking regions of the ballast resistor to increase resistivity and thus reduce required area. The invention achieves this without introducing any additional process or masking steps. Thus the invention allows a reduction in IC die size for the same ESD requirement or allows better ESD protection for a given die size.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: May 25, 2004
    Assignee: Xilinx, Inc.
    Inventors: Daniel Gitlin, James Karp, Jongheon Jeong, Jan L. de Jong
  • Patent number: 6549458
    Abstract: Memory cell structures and related circuitry for use in non-volatile memory devices can be fabricated utilizing standard CMOS processes, for example, 0.18 micron or 0.15 micron processes. Advantageously, the cell structures can be programmed so that a conductive path is formed between like type materials, for example, between a p-type gate and a p-type source/drain region or an n-type gate and an n-type source/drain region. Programming cells in this manner advantageously provides a programmed cell having a low, linear resistance after programming.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: April 15, 2003
    Assignee: Xilinx, Inc.
    Inventors: Kameswara K. Rao, Martin L. Voogel, James Karp, Shahin Toutounchi, Michael J. Hart, Daniel Gitlin, Kevin T. Look, Jongheon Jeong, Radko G. Bankras
  • Patent number: 6522582
    Abstract: Memory cell structures and related circuitry for use in non-volatile memory devices are described. The cell structures can be fabricated utilizing standard CMOS processes, e.g. sub 0.35 micron or sub 0.25 micron processes. Preferably, the cell structures can be fabricated using 0.18 micron or 0.15 micron standard CMOS processes. Advantageously, the cell structures can be programmed so that a conductive path is formed between like type materials. For example, in certain cell structures a cell is programmed by applying a programming voltage in such a way as to form a conductive path between a p-type gate and a p-type source/drain region or an n-type gate and an n-type source/drain region. Programming cells in this manner advantageously provides a programmed cell having a low, linear resistance after programming. In addition, novel charge pump circuits are provided that, in a preferred embodiment, are located “on chip” with an array of memory cells.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: February 18, 2003
    Assignee: Xilinx, Inc.
    Inventors: Kameswara K. Rao, Martin L. Voogel, James Karp, Shahin Toutounchi, Michael J. Hart, Daniel Gitlin, Kevin T. Look, Jongheon Jeong, Radko G. Bankras