Patents by Inventor Jonghwa Shin

Jonghwa Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180275486
    Abstract: A wideband ultra-high refractive index mesoscopic crystal structure using space-filling of an electric dipole according to one aspect of the present disclosure includes: a first layer in which a plurality of high-conductivity unit bodies is arranged in a matrix form, and a low-conductivity material is disposed between the high-conductivity unit bodies to insulate the high-conductivity unit bodies from each other; a second layer in which a plurality of high-conductivity unit bodies is arranged in a matrix form, and a low-conductivity material is disposed between the high-conductivity unit bodies to insulate the high-conductivity unit bodies from each other, the second layer being adjacent to the first layer; and a shield layer existing between the first and second layers and made of a low-conductivity material, wherein the high-conductivity unit bodies in the first layer overlap the plurality of high-conductivity unit bodies arranged in the second layer, and a stack in which the first layer, the shield layer,
    Type: Application
    Filed: March 21, 2018
    Publication date: September 27, 2018
    Inventors: Jonghwa Shin, Yong-Hee Lee, Tae Yong Chang
  • Publication number: 20130138938
    Abstract: The present invention relates to a method of reducing the boot time of an electronic device (i.e., improving the boot speed of the electronic device), such as a computer, an electronic device to which the method is applied, and a recording medium on which the method is recorded. There is provided a method of booting an electronic device includes hiding at least one first device of devices, included in the electronic device, through an initial start-up program, loading drivers corresponding to remaining devices other than the at least one first device, from among the included devices, by driving an Operating System (OS) of the electronic device, and unhiding the hidden at least one first device through the initial start-up program according to a predetermined event.
    Type: Application
    Filed: December 19, 2011
    Publication date: May 30, 2013
    Applicant: LG ELECTRONICS INC.
    Inventors: Yousok BANG, Jonghwa SHIN
  • Patent number: 8428412
    Abstract: An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: April 23, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hyang Kyun Kim, Shanhui Fan, Gordon S. Kino, Jonghwa Shin, Michel J. F. Digonnet, Vinayak Dangui
  • Publication number: 20090175584
    Abstract: An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Application
    Filed: January 20, 2009
    Publication date: July 9, 2009
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hyang Kyun Kim, Shanhui Fan, Gordon S. Kino, Jonghwa Shin, Michel J.F. Digonnet, Vinayak Dangui
  • Patent number: 7489848
    Abstract: An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring surrounding the core region and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: February 10, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hyang Kyun Kim, Shanhui Fan, Gordon S. Kino, Jonghwa Shin, Michel J. F. Digonnet, Vinayak Dangui
  • Patent number: 7400806
    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The photonic-bandgap fiber further includes a core and a core ring surrounding the core and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 15, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hyang Kyun Kim, Shanhui Fan, Gordon S. Kino, Jonghwa Shin, Michel J. F. Digonnet, Vinayak Dangui
  • Publication number: 20080112678
    Abstract: An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring surrounding the core region and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Application
    Filed: January 8, 2008
    Publication date: May 15, 2008
    Inventors: Hyang Kim, Shanhui Fan, Gordon Kino, Jonghwa Shin, Michel Digonnet, Vinayak Dangui
  • Publication number: 20070189686
    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The photonic-bandgap fiber further includes a core and a core ring surrounding the core and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
    Type: Application
    Filed: April 19, 2007
    Publication date: August 16, 2007
    Inventors: Hyang Kim, Shanhui Fan, Gordon Kino, Jonghwa Shin, Michel Digonnet, Vinayak Dangui
  • Patent number: 7228041
    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a first material having a first refractive index and a pattern of a second material formed therein. The second material has a second refractive index lower than the first refractive index. The photonic crystal lattice has a plurality of first regions that support intensity lobes of the highest frequency bulk mode and has a plurality of second regions that do not support intensity lobes of the highest frequency bulk mode. The photonic-bandgap fiber further includes a central core formed in the photonic crystal lattice. The photonic-bandgap fiber further includes a core ring having an outer perimeter. The core ring surrounds the central core, wherein the outer perimeter of the core ring passes only through the second regions of the photonic crystal lattice.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: June 5, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hyang Kyun Kim, Shanhui Fan, Gordon S. Kino, Jonghwa Shin, Michel J. F. Digonnet, Vinayak Dangui
  • Patent number: 7110650
    Abstract: Coupling of core modes to surface modes in an air-core photonic-bandgap fiber (PBF) can cause large propagation losses. Computer simulations analyze the relationship between the geometry and the presence of surface modes in PBFs having a triangular hole pattern and identify ranges of core characteristic dimensions (e.g., radii) for which the fiber supports no surface modes (i.e., only core modes are present) over the entire wavelength range of the bandgap. In particular, for a hole spacing ? and a hole radius ?=0.47?, the core supports a single mode and supports no surface modes for core radii between about 0.68? and about 1.05?. The existence of surface modes can be predicted simply and expediently by studying either the bulk modes alone or the geometry of the fiber without requiring a full analysis of the defect modes.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: September 19, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hyang Kyun Kim, Shanhui Fan, Gordon S. Kino, Jonghwa Shin, Michel J. F. Digonnet
  • Publication number: 20050281522
    Abstract: A photonic-bandgap fiber includes a photonic crystal lattice with a first material having a first refractive index and a pattern of a second material formed therein. The second material has a second refractive index lower than the first refractive index. The photonic crystal lattice has a plurality of first regions that support intensity lobes of the highest frequency bulk mode and has a plurality of second regions that do not support intensity lobes of the highest frequency bulk mode. The photonic-bandgap fiber further includes a central core formed in the photonic crystal lattice. The photonic-bandgap fiber further includes a core ring having an outer perimeter. The core ring surrounds the central core, wherein the outer perimeter of the core ring passes only through the second regions of the photonic crystal lattice.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 22, 2005
    Inventors: Hyang Kim, Shanhui Fan, Gordon Kino, Jonghwa Shin, Michel Digonnet, Vinayak Dangui
  • Publication number: 20050118420
    Abstract: Coupling of core modes to surface modes in an air-core photonic-bandgap fiber (PBF) can cause large propagation losses. Computer simulations analyze the relationship between the geometry and the presence of surface modes in PBFs having a triangular hole pattern and identify ranges of core characteristic dimensions (e.g., radii) for which the fiber supports no surface modes (i.e., only core modes are present) over the entire wavelength range of the bandgap. In particular, for a hole spacing ? and a hole radius ?=0.47?, the core supports a single mode and supports no surface modes for core radii between about 0.7? and about 1.05?, which suggests that such fibers should exhibit a very low propagation loss. The existence of surface modes can be predicted simply and expediently by studying either the bulk modes alone or the geometry of the fiber without requiring a full analysis of the defect modes.
    Type: Application
    Filed: September 10, 2004
    Publication date: June 2, 2005
    Inventors: Hyang Kim, Shanhui Fan, Gordon Kino, Jonghwa Shin, Michel Digonnet