Patents by Inventor Joo-Sik Park

Joo-Sik Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240174795
    Abstract: Provided are a biodegradable aliphatic-aromatic polyester copolymer having excellent hydrolysis resistance and high viscosity which has a carboxyl end group (CEG) content of 15 mg KOH/g or less, a ratio (Mz/Mn) of a z-average molecular weight (Mz) to a number average molecular weight (Mn) of 3 to 15, and a melt index (MI) of 5 g/10 min or less as measured under conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with ASTM D 1238. A method of preparing a biodegradable aliphatic-aromatic polyester copolymer is provided, including adding a chain extender and an anti-hydrolysis agent to an aliphatic-aromatic polyester pre-copolymer over time, whereby a significant viscosity rise and improvement of hydrolysis resistance may be implemented simultaneously.
    Type: Application
    Filed: August 11, 2023
    Publication date: May 30, 2024
    Inventors: Do Young Kim, Hyun Sik Yang, Yu Hyun Kim, Ki Yup Kim, Joo Hyun Nam, Chul Soon Moon, Ji Hae Park, Sung Won Lee, Jun Haeng Lee, Ho Seung Lee
  • Patent number: 11987667
    Abstract: Provided are a biodegradable aliphatic-aromatic polyester copolymer having excellent hydrolysis resistance and high viscosity which has a carboxyl end group (CEG) content of 15 mg KOH/g or less, a ratio (Mz/Mn) of a z-average molecular weight (Mz) to a number average molecular weight (Mn) of 3 to 15, and a melt index (MI) of 5 g/10 min or less as measured under conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with ASTM D 1238. A method of preparing a biodegradable aliphatic-aromatic polyester copolymer is provided, including adding a chain extender and an anti-hydrolysis agent to an aliphatic-aromatic polyester pre-copolymer over time, whereby a significant viscosity rise and improvement of hydrolysis resistance may be implemented simultaneously.
    Type: Grant
    Filed: August 11, 2023
    Date of Patent: May 21, 2024
    Assignees: SK Innovation Co., Ltd., SK Geo Centric Co., Ltd.
    Inventors: Do Young Kim, Hyun Sik Yang, Yu Hyun Kim, Ki Yup Kim, Joo Hyun Nam, Chul Soon Moon, Ji Hae Park, Sung Won Lee, Jun Haeng Lee, Ho Seung Lee
  • Patent number: 11963403
    Abstract: A display device includes a first substrate. A transistor is disposed on the first substrate. A light-emitting element is connected to the transistor. An insulating layer is disposed between the transistor and the light-emitting element. A second substrate at least partially overlaps the first substrate. A color conversion layer is disposed on the second substrate. The insulating layer includes a first insulating layer and a second insulating layer. A distance between the first insulating layer and the first substrate is less than a distance between the second insulating layer and the first substrate. The first insulating layer includes a light blocking material.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: April 16, 2024
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Seung Hyun Park, Joo Sun Yoon, Woo Sik Jun, Yun-Mo Chung
  • Publication number: 20240120459
    Abstract: A method of preparing a positive electrode active material having a high ratio of charge and discharge capacity at a charge end voltage of 4.1 V to 4.175 V to charge and discharge capacity at a charge end voltage of 4.2 V to 4.275 V and having an excellent initial charge and discharge capacity is provided.
    Type: Application
    Filed: November 24, 2022
    Publication date: April 11, 2024
    Applicant: LG Chem, Ltd.
    Inventors: Min Kyu You, Sun Sik Shin, Joo Hong Jin, June Woo Lee, Ji A Shin, Min Joo Park
  • Patent number: 11940368
    Abstract: Disclosed is a method for pre-detecting a defective porous polymer substrate for a separator, including selecting a porous polymer substrate having a plurality of pores; observing the selected porous polymer substrate with a scanning electron microscope (SEM) to obtain an image of the porous polymer substrate; quantifying the average value of pore distribution index (PDI); correcting the quantified average value of pore distribution index to obtain the corrected average value of pore distribution index; determining whether or not the corrected average value of pore distribution index is 60 a.u. (arbitrary unit) or less; and classifying the porous polymer substrate as a good product, when the corrected average value of pore distribution index is determined to be 60 a.u. or less, and classifying the porous polymer substrate as a defective product, when the corrected average value of pore distribution index is determined to be larger than 60 a.u.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: March 26, 2024
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Won-Sik Bae, Joo-Sung Lee, Ho-Sung Kang, Yern-Seung Kim, Se-Jung Park, Je-Seob Park, Ji-Young Hwang
  • Patent number: 5666095
    Abstract: A high power waveguide valve capable of selectively transmitting or sealing the high power without causing its breakdown during a high power operation is disclosed. The inventive high power waveguide valve includes a vacuum chamber, a U-shaped waveguide being provided in the vacuum chamber, a first linear motion driver for vertically sliding the U-shaped waveguide, a dual H-corners assembly connected with the U-shaped waveguide, a sealing plate for selectively sealing the radio frequency between the U-shaped waveguide and the dual H-corners assembly, and a second linear motion driver for horizontally sliding the sealing plate.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: September 9, 1997
    Assignee: Postech Foundation
    Inventors: Won Namkung, Joo-Sik Park, Seung-Hwan Kim, Hee-Seob Kim, Yong-Jung Park