Patents by Inventor Joo Hyuck LEE
Joo Hyuck LEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10994262Abstract: Disclosed are a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, a catalyst for oxidative dehydrogenation of butene having a high butene conversion rate and superior side reaction inhibition effect and thus having high reactivity and high selectivity for a product by preparing metal oxide nanoparticles and then fixing the prepared metal oxide nanoparticles to a support, and a method of preparing the same are provided.Type: GrantFiled: May 18, 2017Date of Patent: May 4, 2021Assignee: LG CHEM, LTD.Inventors: Seongmin Kim, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Jun Kyu Han, Sun Hwan Hwang, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Ye Seul Hwang, Sang Jin Han
-
Patent number: 10843173Abstract: A ferrite catalyst for oxidative dehydrogenation and a method of preparing the same. The ferrite catalyst is prepared using an epoxide-based sol-gel method, wherein a step of burning includes a first burning step, in which burning is performed at a temperature of 70 to 200° C.; and a second burning step, in which burning is performed after the temperature is raised from a temperature in the range of greater than 200° C. to 250° C. to a temperature in the range of 600 to 900° C.Type: GrantFiled: January 4, 2018Date of Patent: November 24, 2020Assignee: LG CHEM, LTD.Inventors: Sun Hwan Hwang, Dong Hyun Ko, Jun Han Kang, Kyong Yong Cha, Joo Hyuck Lee, Hyun Seok Nam, Dae Heung Choi, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Sang Jin Han, Seong Min Kim
-
Patent number: 10518250Abstract: The present invention relates to a ferrite-based catalyst composite, a method of preparing the same, and a method of preparing butadiene using the same. More particularly, the present invention provides a ferrite-based catalyst composite having a shape that allows effective dispersion of excess heat generated in a butadiene production process and prevention of catalyst damage and side reaction occurrence by reducing direct exposure of a catalyst to heat, a method of preparing the ferrite-based catalyst composite, and a method of preparing butadiene capable of lowering the temperature of a hot spot and reducing generation of Cox by allowing active sites of a catalyst to have a broad temperature gradient (profile) during oxidative dehydrogenation using the ferrite-based catalyst composite, and thus, providing improved process efficiency.Type: GrantFiled: February 17, 2017Date of Patent: December 31, 2019Assignee: LG CHEM, LTD.Inventors: Dae Heung Choi, Dong Hyun Ko, Kyong Yong Cha, Myung Ji Suh, Ye Seul Hwang, Sun Hwan Hwang, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han, Jun Kyu Han
-
Patent number: 10486150Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.Type: GrantFiled: December 21, 2016Date of Patent: November 26, 2019Assignee: LG CHEM, LTD.Inventors: Sun Hwan Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han
-
Patent number: 10343958Abstract: The present invention relates to a catalyst for coating a surface of a porous material and a method of treating the surface of the porous material. More particularly, when the catalyst for coating a surface of a porous material and the method of treating the surface of the porous material of the present invention are used for butadiene synthesis reaction under high gas space velocity and high pressure conditions, heat generation may be easily controlled and differential pressure may be effectively alleviated, thereby providing improved reactant conversion rate and product selectivity.Type: GrantFiled: March 30, 2017Date of Patent: July 9, 2019Assignee: LG CHEM, LTD.Inventors: Myung Ji Suh, Jun Han Kang, Dong Hyun Ko, Seong Min Kim, Hyun Seok Nam, Joo Hyuck Lee, Kyong Yong Cha, Dae Heung Choi, Sang Jin Han, Jun Kyu Han, Sun Hwan Hwang, Ye Seul Hwang
-
Publication number: 20190184388Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.Type: ApplicationFiled: December 21, 2016Publication date: June 20, 2019Inventors: Sun Hwan HWANG, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN
-
Patent number: 10315969Abstract: Provided are a method of preparing a multicomponent bismuth-molybdenum composite metal oxide catalyst, and a multicomponent bismuth-molybdenum composite metal oxide catalyst prepared thereby. According to the preparation method, since the almost same structure as that of a typical quaternary bismuth-molybdenum catalyst may be obtained by performing two-step co-precipitation, i.e., primary and secondary co-precipitation, of metal components constituting the catalyst, the reduction of catalytic activity due to the deformation of the structure of the catalyst may be suppressed.Type: GrantFiled: June 4, 2015Date of Patent: June 11, 2019Assignee: LG CHEM, LTD.Inventors: Ye Seul Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Jun Kyu Han, Sang Jin Han
-
Publication number: 20190134612Abstract: A ferrite catalyst for oxidative dehydrogenation and a method of preparing the same. The ferrite catalyst is prepared using an epoxide-based sol-gel method, wherein a step of burning includes a first burning step, in which burning is performed at a temperature of 70 to 200° C.; and a second burning step, in which burning is performed after the temperature is raised from a temperature in the range of greater than 200° C. to 250° C. to a temperature in the range of 600 to 900° C.Type: ApplicationFiled: January 4, 2018Publication date: May 9, 2019Inventors: Sun Hwan HWANG, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Joo Hyuck LEE, Hyun Seok NAM, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN, Seong Min KIM
-
Publication number: 20180290126Abstract: Disclosed are a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, a catalyst for oxidative dehydrogenation of butene having a high butene conversion rate and superior side reaction inhibition effect and thus having high reactivity and high selectivity for a product by preparing metal oxide nanoparticles and then fixing the prepared metal oxide nanoparticles to a support, and a method of preparing the same are provided.Type: ApplicationFiled: May 18, 2017Publication date: October 11, 2018Inventors: Seongmin KIM, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Jun Kyu HAN, Sun Hwan HWANG, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Ye Seul HWANG, Sang Jin HAN
-
Publication number: 20180214854Abstract: The present invention relates to a ferrite-based catalyst composite, a method of preparing the same, and a method of preparing butadiene using the same. More particularly, the present invention provides a ferrite-based catalyst composite having a shape that allows effective dispersion of excess heat generated in a butadiene production process and prevention of catalyst damage and side reaction occurrence by reducing direct exposure of a catalyst to heat, a method of preparing the ferrite-based catalyst composite, and a method of preparing butadiene capable of lowering the temperature of a hot spot and reducing generation of Cox by allowing active sites of a catalyst to have a broad temperature gradient (profile) during oxidative dehydrogenation using the ferrite-based catalyst composite, and thus, providing improved process efficiency.Type: ApplicationFiled: February 17, 2017Publication date: August 2, 2018Inventors: Dae Heung CHOI, Dong Hyun KO, Kyong Yong CHA, Myung Ji SUH, Ye Seul HWANG, Sun Hwan HWANG, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN, Jun Kyu HAN
-
Publication number: 20180186711Abstract: The present invention relates to a catalyst for coating a surface of a porous material and a method of treating the surface of the porous material. More particularly, when the catalyst for coating a surface of a porous material and the method of treating the surface of the porous material of the present invention are used for butadiene synthesis reaction under high gas space velocity and high pressure conditions, heat generation may be easily controlled and differential pressure may be effectively alleviated, thereby providing improved reactant conversion rate and product selectivity.Type: ApplicationFiled: March 30, 2017Publication date: July 5, 2018Inventors: Myung Ji SUH, Jun Han KANG, Dong Hyun KO, Seong Min KIM, Hyun Seok NAM, Joo Hyuck LEE, Kyong Yong CHA, Dae Heung CHOI, Sang Jin HAN, Jun Kyu HAN, Sun Hwan HWANG, Ye Seul HWANG
-
Patent number: 9969661Abstract: Disclosed are a method of preparing conjugated diene and a device therefor. More particularly, disclosed a method of preparing conjugated diene, wherein generated gas including butadiene is cooled and then water discharged at a lower part is not directly treated as waste water and subjected to byproduct removal and steam-extraction to utilize converted steam, and an installation issue of an existing biological waste water disposal equipment due to an excessive amount of byproducts can be resolved, and a device therefor are disclosed.Type: GrantFiled: October 20, 2015Date of Patent: May 15, 2018Assignee: LG CHEM, LTD.Inventors: Sang Jin Han, Jun Han Kang, Dong Hyun Ko, Hyun Seok Nam, Joo Hyuck Lee, Jun Kyu Han, Myung Ji Suh, Kyong Yong Cha, Dae Heung Choi, Ye Seul Hwang
-
Patent number: 9925525Abstract: The present invention relates to a bismuth molybdate-based composite oxide catalyst having a microporous zeolite coating layer on the surface thereof and thus having high selectivity for 1,3-butadiene, a method of preparing the same, and a method of preparing 1,3-butadiene using the same. The catalyst has a microporous zeolite coating layer, and thus enables only gaseous products (light) to selectively pass through the zeolite coating layer, improving selectivity for 1,3-butadiene.Type: GrantFiled: November 18, 2014Date of Patent: March 27, 2018Assignee: LG CHEM, LTD.Inventors: Dae Heung Choi, Dong Hyun Ko, Jun Han Kang, Kyong Yong Cha, Dae Chul Kim, Joo Hyuck Lee, Hyun Seok Nam, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Sang Jin Han
-
Patent number: 9751819Abstract: The present invention relates to a method of preparing butadiene. More particularly, the present invention relates to a method of preparing butadiene by feeding butene and oxygen into a reactor containing a composite metal oxide catalyst and performing oxidative dehydrogenation, wherein a mole ratio of the oxygen to the butene is 1.8 to 2.2. In accordance with the present invention, a method of preparing butadiene to secure long-term operation stability by maintaining the intensity of a catalyst despite oxidative dehydrogenation and not to decrease selectivity due to less side reaction is provided.Type: GrantFiled: November 25, 2015Date of Patent: September 5, 2017Assignee: LG CHEM, LTD.Inventors: Dae Heung Choi, Dong Hyun Ko, Myung Ji Suh, Kyong Yong Cha, Ye Seul Hwang, Jun Han Kang, Hyun Seok Nam, Joo Hyuck Lee, Sang Jin Han, Jun Kyu Han
-
Patent number: 9592496Abstract: Disclosed are a catalyst composition for oxidative dehydrogenation and a method of preparing the same. More particularly, disclosed is a catalyst composition comprising a multi-ingredient-based metal oxide catalyst and a mixed metal hydroxide. The catalyst composition and the method of preparing the same according to the present disclosure may prevent loss occurring in a filling process due to superior mechanical durability and wear according to long-term use, may inhibit polymer formation and carbon deposition during reaction, and may provide a superior conversion rate and superior selectivity.Type: GrantFiled: November 14, 2014Date of Patent: March 14, 2017Assignee: LG CHEM, LTD.Inventors: Dae Chul Kim, Dong Hyun Ko, Sung June Cho, Jun Han Kang, Kyong Yong Cha, Joo Hyuck Lee, Hyun Seok Nam, Dae Heung Choi, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Sang Jin Han
-
Publication number: 20170036972Abstract: Disclosed are a method of preparing conjugated diene and a device therefor. More particularly, disclosed a method of preparing conjugated diene, wherein generated gas including butadiene is cooled and then water discharged at a lower part is not directly treated as waste water and subjected to byproduct removal and steam-extraction to utilize converted steam, and an installation issue of an existing biological waste water disposal equipment due to an excessive amount of byproducts can be resolved, and a device therefor are disclosed.Type: ApplicationFiled: October 20, 2015Publication date: February 9, 2017Inventors: Sang Jin HAN, Jun Han KANG, Dong Hyun KO, Hyun Seok NAM, Joo Hyuck LEE, Jun Kyu HAN, Myung Ji SUH, Kyong Yong CHA, Dae Heung CHOI, Ye Seul HWANG
-
Publication number: 20160368839Abstract: Provided are a method of preparing a multicomponent bismuth-molybdenum composite metal oxide catalyst, and a multicomponent bismuth-molybdenum composite metal oxide catalyst prepared thereby. According to the preparation method, since the almost same structure as that of a typical quaternary bismuth-molybdenum catalyst may be obtained by performing two-step co-precipitation, i.e., primary and secondary co-precipitation, of metal components constituting the catalyst, the reduction of catalytic activity due to the deformation of the structure of the catalyst may be suppressed.Type: ApplicationFiled: June 4, 2015Publication date: December 22, 2016Inventors: Ye Seul HWANG, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Jun Kyu HAN, Sang Jin HAN
-
Publication number: 20160347685Abstract: The present invention relates to a method of preparing butadiene. More particularly, the present invention relates to a method of preparing butadiene by feeding butene and oxygen into a reactor containing a composite metal oxide catalyst and performing oxidative dehydrogenation, wherein a mole ratio of the oxygen to the butene is 1.8 to 2.2. In accordance with the present invention, a method of preparing butadiene to secure long-term operation stability by maintaining the intensity of a catalyst despite oxidative dehydrogenation and not to decrease selectivity due to less side reaction is provided.Type: ApplicationFiled: November 25, 2015Publication date: December 1, 2016Inventors: Dae Heung CHOI, Dong Hyun KO, Myung Ji SUH, Kyong Yong CHA, Ye Seul HWANG, Jun Han KANG, Hyun Seok NAM, Joo Hyuck LEE, Sang Jin HAN, Jun Kyu HAN
-
Publication number: 20160256855Abstract: The present invention relates to a bismuth molybdate-based composite oxide catalyst having a microporous zeolite coating layer on the surface thereof and thus having high selectivity for 1,3-butadiene, a method of preparing the same, and a method of preparing 1,3-butadiene using the same. The catalyst has a microporous zeolite coating layer, and thus enables only gaseous products (light) to selectively pass through the zeolite coating layer, improving selectivity for 1,3-butadiene.Type: ApplicationFiled: November 18, 2014Publication date: September 8, 2016Applicant: LG CHEM, Ltd.Inventors: Dae Heung CHOI, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Dae Chul KIM, Joo Hyuck LEE, Hyun Seok NAM, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN
-
Publication number: 20150352534Abstract: Disclosed are a catalyst composition for oxidative dehydrogenation and a method of preparing the same. More particularly, disclosed is a catalyst composition comprising a multi-ingredient-based metal oxide catalyst and a mixed metal hydroxide. The catalyst composition and the method of preparing the same according to the present disclosure may prevent loss occurring in a filling process due to superior mechanical durability and wear according to long-term use, may inhibit polymer formation and carbon deposition during reaction, and may provide a superior conversion rate and superior selectivity.Type: ApplicationFiled: November 14, 2014Publication date: December 10, 2015Inventors: Dae Chul KIM, Dong Hyun KO, Sung June CHO, Ju Han KANG, Kyong Yong CHA, Joo Hyuck LEE, Hyun Seok NAM, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN