Patents by Inventor Joonhoon Kim

Joonhoon Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210388399
    Abstract: Recombinant Aspergillus genetically modified to increase expression of g8846, renamed herein as aconitic acid exporter (aexA), are provided, which in some examples are also genetically inactivated for an endogenous cis-aconitic acid decarboxylase (cadA) gene. Such recombinant Aspergillus produce more aconitic acid as compared to native Aspergillus. Also provided are methods of using such recombinant Aspergillus to increase production of aconitic acid and other organic acids, such as citric acid, itaconic acid, and 3-hydroxypropionic acid (3-HP).
    Type: Application
    Filed: June 14, 2021
    Publication date: December 16, 2021
    Applicant: Battelle Memorial Institute
    Inventors: Shuang Deng, Jon K. Magnuson, Joonhoon Kim, Kyle R. Pomraning, Ziyu Dai, Beth A. Hofstad
  • Publication number: 20210254077
    Abstract: Fungi that are genetically inactivated for the mstC gene (or a homolog thereof) are provided, which can also be genetically modified to increase production of heterologous proteins from a glucoamylase promoter. Methods of using these fungi, for example to degrade a biomass, are also provided.
    Type: Application
    Filed: January 28, 2021
    Publication date: August 19, 2021
    Applicants: Battelle Memorial Institute, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Scott E. Baker, Jon K. Magnuson, Morgann C. Reilly, Joonhoon Kim, John Gladden, Jed J. Lynn
  • Patent number: 10982234
    Abstract: Microorganisms that co-consume glucose with non-glucose carbohydrates, such as xylose, and methods of using same. The microorganisms comprise modifications that reduce or ablate the activity of a phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) protein or modifications that reduce or ablate the activity of a phosphoglucose isomerase and a GntR. The PTS protein may be selected from an enzyme I (EI), an HPr, an FPr, and an enzyme IIGlc (EIIGlc). Additional modifications include reduction or ablation of the activity of a pyruvate formate lyase, a lactate dehydrogenase, and a fumarate reductase and inclusion of recombinant pyruvate decarboxylase and alcohol dehydrogenase genes. The microorganisms are particularly suited to co-consuming glucose and xylose in media containing these substrates and producing ethanol therefrom.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: April 20, 2021
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Jennifer L. Reed, Joonhoon Kim
  • Patent number: 10934551
    Abstract: Fungi that are genetically inactivated for the mstC gene (or a homolog thereof) are provided, which can also be genetically modified to increase production of heterologous proteins from a glucoamylase promoter. Methods of using these fungi, for example to degrade a biomass, are also provided.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: March 2, 2021
    Assignees: Battelle Memorial Institute, Natl Tech & Engineering Solutions of Sandia, LLC
    Inventors: Scott E. Baker, Jon K. Magnuson, Morgann C. Reilly, Joonhoon Kim, John Gladden, Jed J. Lynn
  • Publication number: 20190264238
    Abstract: Microorganisms that co-consume glucose with non-glucose carbohydrates, such as xylose, and methods of using same. The microorganisms comprise modifications that reduce or ablate the activity of a phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) protein or modifications that reduce or ablate the activity of a phosphoglucose isomerase and a GntR. The PTS protein may be selected from an enzyme I (EI), an HPr, an FPr, and an enzyme IIGlc (EIIGlc). Additional modifications include reduction or ablation of the activity of a pyruvate formate lyase, a lactate dehydrogenase, and a fumarate reductase and inclusion of recombinant pyruvate decarboxylase and alcohol dehydrogenase genes. The microorganisms are particularly suited to co-consuming glucose and xylose in media containing these substrates and producing ethanol therefrom.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 29, 2019
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Jennifer L. Reed, Joonhoon Kim
  • Patent number: 10301653
    Abstract: Microorganisms that co-consume glucose with non-glucose carbohydrates, such as xylose, and methods of using same. The microorganisms comprise modifications that reduce or ablate the activity of a phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) protein or modifications that reduce or ablate the activity of a phosphoglucose isomerase and a GntR. The PTS protein may be selected from an enzyme I (EI), an HPr, an FPr, and an enzyme IIGlc (EIIGlc). Additional modifications include reduction or ablation of the activity of a pyruvate formate lyase, a lactate dehydrogenase, and a fumarate reductase and inclusion of recombinant pyruvate decarboxylase and alcohol dehydrogenase genes. The microorganisms are particularly suited to co-consuming glucose and xylose in media containing these substrates and producing ethanol therefrom.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: May 28, 2019
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Jennifer L. Reed, Joonhoon Kim
  • Publication number: 20190112611
    Abstract: Fungi that are genetically inactivated for the mstC gene (or a homolog thereof) are provided, which can also be genetically modified to increase production of heterologous proteins from a glucoamylase promoter. Methods of using these fungi, for example to degrade a biomass, are also provided.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Inventors: Scott E. Baker, Jon K. Magnuson, Morgann C. Reilly, Joonhoon Kim, John Gladden, Jed J. Lynn
  • Publication number: 20170009262
    Abstract: Microorganisms that co-consume glucose with non-glucose carbohydrates, such as xylose, and methods of using same. The microorganisms comprise modifications that reduce or ablate the activity of a phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) protein or modifications that reduce or ablate the activity of a phosphoglucose isomerase and a GntR. The PTS protein may be selected from an enzyme I (EI), an HPr, an FPr, and an enzyme IIGlc (EIIGlc). Additional modifications include reduction or ablation of the activity of a pyruvate formate lyase, a lactate dehydrogenase, and a fumarate reductase and inclusion of recombinant pyruvate decarboxylase and alcohol dehydrogenase genes. The microorganisms are particularly suited to co-consuming glucose and xylose in media containing these substrates and producing ethanol therefrom.
    Type: Application
    Filed: July 6, 2015
    Publication date: January 12, 2017
    Inventors: Jennifer L. Reed, Joonhoon Kim