Patents by Inventor Jordan Prosky

Jordan Prosky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922348
    Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models is generated by performing a training step on a corresponding one of the plurality of training sets of the plurality of medical scans. A set of abnormality data is generated by applying a subset of a set of inference functions on a new medical scan. The subset of the set of inference functions utilize the subset of the set of sub-models, and each of the set of abnormality data is generated as output of performing one of the subset of the set of inference functions. The multi-model medical scan analysis system is further operable to generate final abnormality data that includes a global probability indicating a probability that any abnormality is present based on the set of abnormality data.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: March 5, 2024
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Patent number: 11829914
    Abstract: A medical scan header standardization system is operable to determine a plurality of counts for a plurality of entries of at least one of a standard set of fields for headers of a plurality of medical images. A standard set of header entries is determined for at least one of the standard set of fields based on including ones of the entries for the each of the standard set of fields with counts of the plurality of counts that compare favorably to a threshold. One of the standard set of header entries is selected to replace an entry of a field of a header of a medical image. A computer vision model is trained utilizing a training set of images that includes the medical image and the selected one of the standard set of header entries. Inference data for at least one new medical scan is generated based on utilizing the computer vision model.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: November 28, 2023
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Jordan Prosky, Eric C. Poblenz, Chris Croswhite, Ben Covington
  • Patent number: 11823106
    Abstract: A location-based medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans. Location-based subsets of the plurality of medical scans are generated by including ones of the plurality of medical scans with originating locations that compare favorably to location grouping criteria for the each location-based subset. A plurality of location-based models are generated by performing a fine-tuning step on the generic model, utilizing a corresponding one of the plurality of location-based subsets. Inference data is generated for a new medical scan by utilizing one of the location-based models on the new medical scan, where an originating location associated with the new medical scan compares favorably to location grouping criteria for the location-based subset utilized to generate the location-based model. The inference data is transmitted to a client device for display via a display device.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 21, 2023
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Patent number: 11790297
    Abstract: A model-assisted annotating system is operable to receive a first set of annotation data, corresponding to a broad type of annotation data output. A first training step is performed to train a computer vision model using the first set of annotation data. A second set of annotation data corresponding to the broad type of annotation data output is generated performing an inference function utilizing the computer vision model on medical scans. Additional annotation data further specifies the broad type of annotation data output is received. A second training step is performed to generate an updated computer vision model using set of additional annotation data. A third set of annotation data corresponding to the specified type of annotation data output is generated by performing an updated inference function utilizing the updated computer vision model on medical scans.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: October 17, 2023
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton, Lionel Lints
  • Patent number: 11748677
    Abstract: A multi-model medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans and corresponding labeling data. A plurality of fine-tuned models are generated by performing a fine-tuning step on the generic model. Abnormality detection data is generated for a new medical scan by utilizing the generic model. A first one of the plurality of abnormality types that is detected in the new medical scan is determined based on a corresponding one of the plurality of probability values. Additional abnormality data is generated by performing a fine-tuned inference function on the image data of the new medical scan that utilizes one of the plurality of fine-tuned models that corresponds to the first one of the plurality of abnormality types. The additional abnormality data is transmitted for display.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: September 5, 2023
    Assignee: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Patent number: 11694137
    Abstract: A method includes generating first contrast significance data for a first computer vision model generated from a first training set of medical scans. First significant contrast parameters are identified based on the first contrast significance data. A first re-contrasted training set is generated based on performing a first intensity transformation function on the first training set of medical scans, where the first intensity transformation function utilizes the first significant contrast parameters. A first re-trained model is generated from the first re-contrasted training set, which is associated with corresponding output labels based on abnormality data for the first training set of medical scans. Re-contrasted image data of a new medical scan is generated based on performing the first intensity transformation function. Inference data indicating at least one abnormality detected in the new medical scan is generated based on utilizing the first re-trained model on the re-contrasted image data.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: July 4, 2023
    Assignee: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Patent number: 11669792
    Abstract: A medical scan triaging system is operable to train a computer vision model and to generate abnormality data indicating abnormality probabilities for medical scans via the computer vision model. A first subset of medical scans is determined by identifying medical scans with abnormality probabilities greater than a first probability value of a triage probability threshold. A second subset of medical scans is determined by identifying medical scans with abnormality probabilities less than the first probability value. An updated first subset of medical scans is determined by identifying medical scans with abnormality probabilities greater than a second probability value of an updated triage probability threshold. An updated second subset of the plurality of medical scans is determined by identifying medical scans with a abnormality probabilities less than the second probability value. The updated first subset of medical scans is transmitted to client devices.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: June 6, 2023
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Patent number: 11669790
    Abstract: An intensity transform augmentation system is operable to generate a plurality of sets of augmented images by performing a set of intensity transformation functions on each of a training set of medical scans. Each of the set of intensity transformation functions are based on density properties of corresponding anatomy feature present in the training set of medical scans. A computer vision model is generated by performing a training step on the plurality of sets of augmented images, where each augmented image of a set of augmented images is assigned same output label data based on a corresponding one of the training set of medical scans. Inference data is generated by performing an inference function on a new medical scan by utilizing the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: June 6, 2023
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Patent number: 11626194
    Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: April 11, 2023
    Assignee: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Patent number: 11551795
    Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: January 10, 2023
    Assignee: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Lionel Lints, Ben Covington, Anthony Upton
  • Patent number: 11538564
    Abstract: A global multi-label generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Global probability data that includes a set of global probability values each indicating a probability that a corresponding one of the set of abnormality classes is present in the new medical scan is generated based on the probability matrix data for transmission to a client device.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: December 27, 2022
    Assignee: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman
  • Publication number: 20220223243
    Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models is generated by performing a training step on a corresponding one of the plurality of training sets of the plurality of medical scans. A set of abnormality data is generated by applying a subset of a set of inference functions on a new medical scan. The subset of the set of inference functions utilize the subset of the set of sub-models, and each of the set of abnormality data is generated as output of performing one of the subset of the set of inference functions. The multi-model medical scan analysis system is further operable to generate final abnormality data that includes a global probability indicating a probability that any abnormality is present based on the set of abnormality data.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20220215918
    Abstract: A method includes generating first contrast significance data for a first computer vision model generated from a first training set of medical scans. First significant contrast parameters are identified based on the first contrast significance data. A first re-contrasted training set is generated based on performing a first intensity transformation function on the first training set of medical scans, where the first intensity transformation function utilizes the first significant contrast parameters. A first re-trained model is generated from the first re-contrasted training set, which is associated with corresponding output labels based on abnormality data for the first training set of medical scans. Re-contrasted image data of a new medical scan is generated based on performing the first intensity transformation function. Inference data indicating at least one abnormality detected in the new medical scan is generated based on utilizing the first re-trained model on the re-contrasted image data.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Applicant: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Publication number: 20220215915
    Abstract: A model-assisted annotating system is operable to receive a first set of annotation data, corresponding to a broad type of annotation data output. A first training step is performed to train a computer vision model using the first set of annotation data. A second set of annotation data corresponding to the broad type of annotation data output is generated performing an inference function utilizing the computer vision model on medical scans. Additional annotation data further specifies the broad type of annotation data output is received. A second training step is performed to generate an updated computer vision model using set of additional annotation data. A third set of annotation data corresponding to the specified type of annotation data output is generated by performing an updated inference function utilizing the updated computer vision model on medical scans.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 7, 2022
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton, Lionel Lints
  • Publication number: 20220180986
    Abstract: A medical scan header standardization system is operable to determine a plurality of counts for a plurality of entries of at least one of a standard set of fields for headers of a plurality of medical images. A standard set of header entries is determined for at least one of the standard set of fields based on including ones of the entries for the each of the standard set of fields with counts of the plurality of counts that compare favorably to a threshold. One of the standard set of header entries is selected to replace an entry of a field of a header of a medical image. A computer vision model is trained utilizing a training set of images that includes the medical image and the selected one of the standard set of header entries. Inference data for at least one new medical scan is generated based on utilizing the computer vision model.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 9, 2022
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Jordan Prosky, Eric C. Poblenz, Chris Croswhite, Ben Covington
  • Publication number: 20220165377
    Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 26, 2022
    Applicant: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Lionel Lints, Ben Covington, Anthony Upton
  • Patent number: 11328798
    Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models can be generated by performing a training step on a corresponding one of the plurality of training sets. A subset of the set of sub-models is selected for a new medical scan. A set of abnormality data is generated by applying a subset of a set of inference functions on the new medical scan, where the subset of the set of inference functions utilize the subset of the set of sub-models. Final abnormality data is generated by performing a final inference function on the set of abnormality data. The final abnormality data can be to a client device for display via a display device.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: May 10, 2022
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Patent number: 11322233
    Abstract: A contrast parameter learning system is operable to generate contrast significance data for a computer vision model, where the computer vision model was generated by performing a training step on a training set of medical scans. Significant contrast parameters are identified based on the contrast significance data. A re-contrasted training set is generated by performing an intensity transformation function that utilizes the significant contrast parameters on the training set of medical scans. A re-trained model is generated by performing the training step on the first re-contrasted training set. Re-contrasted image data of a new medical scan is generated by performing the intensity transformation function. Inference data is generated by performing an inference function that utilizes the first re-trained model on the re-contrasted image data. The inference data is transmitted via the transmitter to a client device for display via a display device.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: May 3, 2022
    Assignee: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Patent number: 11295840
    Abstract: A medical scan header standardization system is operable to determine a set of standard DICOM headers based on determining a standard set of fields and based on further determining a standard set of entries for each of the standard set of fields. A DICOM image is received via a network, and a header of the DICOM image is determined to be incorrect. A selected one of the set of standard DICOM headers to replace the header of the DICOM image is determined. The selected one of the set of standard DICOM headers is transmitted, via the network, to a medical scan database for storage in conjunction with the DICOM image.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: April 5, 2022
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Jordan Prosky, Eric C. Poblenz, Chris Croswhite, Ben Covington
  • Patent number: 11282595
    Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: March 22, 2022
    Assignee: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Lionel Lints, Ben Covington, Anthony Upton