Patents by Inventor Jordan Silberling

Jordan Silberling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10697856
    Abstract: A soft body system adapted to form the body and exterior surface of a Guided Soft Target for testing crash avoidance technologies in a subject vehicle is disclosed. The soft body system is adapted to be mounted atop a motorized Dynamic Motion Element (DME), and when so mounted, is adapted to collide with the subject vehicle while the DME is moving. The soft body system includes a semi-rigid form with an exterior surface. The form is sufficiently yielding so as to impart a minimal force to the subject vehicle upon impact. The form may be shaped like a vehicle or a part of a vehicle. The exterior surface includes a side skirt made of radar absorptive material (RAM), radar reflective material (RRM), or a combination of both, which is positioned adjacent to the ground and is constructed to prevent radar waves from entering into the soft body system.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: June 30, 2020
    Assignee: Dynamic Research Inc.
    Inventors: Jordan Silberling, Paul Satrom, Joe Kelly, Brian Kebschull, John Lenkeit
  • Publication number: 20180010984
    Abstract: A soft body system adapted to form the body and exterior surface of a Guided Soft Target for testing crash avoidance technologies in a subject vehicle is disclosed. The soft body system is adapted to be mounted atop a motorized Dynamic Motion Element (DME) and when so mounted is adapted to collide with the subject vehicle while the DME is moving. The soft body system includes a semi-rigid form with an exterior surface. The form is sufficiently yielding so as to impart a minimal force to the subject vehicle upon impact. The form may be shaped like a vehicle or a part of a vehicle. The exterior surface includes a side skirt made of radar absorptive material (RAM), radar reflective material (RRM) or a combination of both, which is positioned adjacent to the ground and constructed to prevent radar wave from entering the soft body system.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 11, 2018
    Inventors: Jordan Silberling, Paul Satrom, Joe Kelly, Brian Kebschull, John Lenkeit
  • Patent number: 9182942
    Abstract: A Dynamic Motion Element for use in testing crash avoidance technologies in a subject vehicle is disclosed. The Dynamic Motion Element includes a body comprising an upper surface wherein the upper surface is adapted to support a soft-body having the size and shape of a vehicle. The body has at least one tapered side so as to allow the subject vehicle to drive up to and on the upper surface with minimal to no damage to the subject vehicle or the Dynamic Motion Element. The body is supported by at least two rotational structures, including at least one driven rotational structure coupled with an electronically-controlled power source. The electronically-controlled braking system applies braking force to at least one of the rotational structures.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 10, 2015
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 9056673
    Abstract: The method of maintaining optimal braking and skid protection for a two-wheeled vehicle wheel with a wheel speed sensor failure involves providing pulsed braking pressure to the affected wheel with the wheel speed sensor failure. If an incipient or initial skid on another wheel with a functioning wheel speed sensor has occurred, the pulsed braking pressure to the affected wheel is limited to the brake pressure command that caused the last incipient or initial skid on the other wheel, scaled by a factor for safety. Otherwise the pulsed braking pressure to the affected wheel is limited to be no greater than the greatest commanded brake pressure to the other wheel. The pulsed braking pressure is also limited to be less than the brake pressure commanded to the affected wheel.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: June 16, 2015
    Assignee: Hydro-Aire, Inc.
    Inventors: Ronald Raby, Jordan Silberling
  • Publication number: 20140195075
    Abstract: A Guided Soft Target System is disclosed that includes a subject vehicle and a dynamic motion element (DME). The subject vehicle may be accelerated at an arbitrary rate to a speed corresponding to the speed in its own predetermined trajectory. Each of the DME vehicles computes its target speed as a ratio of the subject vehicle's speed at each waypoint location, and modulates its speed control to achieve this target speed. To further compensate for timing differences along the target path, each DME computes its longitudinal error along the path relative to its target position, as dictated by the position of the subject vehicle within its own trajectory, and each DME's target speed is modulated in order to minimize the longitudinal error along the predetermined trajectory.
    Type: Application
    Filed: March 13, 2014
    Publication date: July 10, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8762044
    Abstract: A Guided Soft Target System is disclosed that includes a subject vehicle and a dynamic motion element (DME). The subject vehicle may be accelerated at an arbitrary rate to a speed corresponding to the speed in its own predetermined trajectory. Each of the DME vehicles computes its target speed as a ratio of the subject vehicle's speed at each waypoint location, and modulates its speed control to achieve this target speed. To further compensate for timing differences along the target path, each DME computes its longitudinal error along the path relative to its target position, as dictated by the position of the subject vehicle within its own trajectory, and each DME's target speed is modulated in order to minimize the longitudinal error along the predetermined trajectory.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: June 24, 2014
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8755999
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 17, 2014
    Assignee: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8751143
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 10, 2014
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8706395
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: April 22, 2014
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Publication number: 20140058589
    Abstract: A Guided Soft Target System is disclosed that includes a subject vehicle and a dynamic motion element (DME). The subject vehicle may be accelerated at an arbitrary rate to a speed corresponding to the speed in its own predetermined trajectory. Each of the DME vehicles computes its target speed as a ratio of the subject vehicle's speed at each waypoint location, and modulates its speed control to achieve this target speed. To further compensate for timing differences along the target path, each DME computes its longitudinal error along the path relative to its target position, as dictated by the position of the subject vehicle within its own trajectory, and each DME's target speed is modulated in order to minimize the longitudinal error along the predetermined trajectory.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 27, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Publication number: 20140045631
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 13, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Publication number: 20140039727
    Abstract: A cam actuated hydraulic brake system and an in plane tensioner pulley belt drive system may be used on autonomous vehicles, such as dynamic motion elements for the evaluation of various crash avoidance technologies. The brake system utilizes a cam driven by a servo to push the piston push rod of a hydraulic master brake cylinder, thus distributing pressurized brake fluid throughout the brake system. The pulley drive system uses an articulating arm for the driven pulley, and that arm may also have connected to it one or two tension pulleys, each of which is in contact with the belt. Because the drive pulley and the tensioner pulleys pivot about the same pivot axis, the needed belt length remains nearly constant across the entire range of the articulating arm.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: Dynamic Research Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, John Zellner
  • Patent number: 8589062
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: November 19, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8583358
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: November 12, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Publication number: 20130162479
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Application
    Filed: June 25, 2012
    Publication date: June 27, 2013
    Applicant: DYNAMIC RESEARCH INC.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8457877
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: June 4, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8447509
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing a sensor signature substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network. Specific geometries for the DME have been discovered that minimize the risk of the DME flipping up and hitting or otherwise damaging or disrupting the ride of typical test vehicles during impact of the test vehicles with the GST, all while minimizing the effect of the DME on the sensor signature of the GST.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 21, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8428863
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 23, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Patent number: 8428864
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 23, 2013
    Assignee: Dynamic Research, Inc.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner
  • Publication number: 20130018528
    Abstract: A Guided Soft Target (GST) system and method provides a versatile test system and methodology for the evaluation of various crash avoidance technologies. This system and method can be used to replicate the pre-crash motions of the CP in a wide variety of crash scenarios while minimizing physical risk, all while consistently providing radar and other sensor signatures substantially identical to that of the item being simulated. The GST system in various example embodiments may comprise a soft target vehicle or pedestrian form removably attached to a programmable, autonomously guided, self-propelled Dynamic Motion Element (DME), which may be operated in connection with a wireless computer network operating on a plurality of complimentary communication networks. Specific DME geometries are provided to minimize ride disturbance and observability by radar and other sensors. Computer controlled DME braking systems are disclosed as well as break-away and retractable antenna systems.
    Type: Application
    Filed: June 25, 2012
    Publication date: January 17, 2013
    Applicant: DYNAMIC RESEARCH INC.
    Inventors: Joseph Kelly, Peter Broen, Jordan Silberling, Nenad Bozin, John Zellner