Patents by Inventor Jordi Parramon

Jordi Parramon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10806930
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can quantitatively forecast and determine the timing of an early replacement indicator (tEOLi) and an IMD End of Life (tEOL). These forecasts and determinations of tEOLi and tEOL occur in accordance with one or more parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, determines and forecasts tEOLi and tEOL. Such forecasted or determined values may also be used by a shutdown algorithm to suspend therapeutic operation of the IMD.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Publication number: 20200316381
    Abstract: A current generation architecture for an implantable stimulator device such as an Implantable Pulse Generator (IPG) is disclosed. Current source and sink circuitry are both divided into coarse and fine portions, which respectively can provide coarse and fine current resolutions to a specified electrode on the IPG. The coarse portion is distributed across all of the electrodes and so can source or sink current to any of the electrodes. The coarse portion is divided into a plurality of stages, each of which is capable via an associated switch bank of sourcing or sinking a coarse amount of current to or from any one of the electrodes on the device. The fine portion of the current generation circuit preferably includes source and sink circuitry dedicated to each of the electrode on the device, which can comprise digital-to-analog current converters (DACs).
    Type: Application
    Filed: June 17, 2020
    Publication date: October 8, 2020
    Inventors: Jordi Parramon, David K.L. Peterson, Paul J. Griffith
  • Patent number: 10792491
    Abstract: The problem of a potentially high amount of supra-threshold charge passing through the patient's tissue at the end of an Implantable Pulse Generator (IPG) program is addressed by circuitry that periodically dissipates only small amount of the charge stored on capacitances (e.g., DC-blocking capacitors) during a pulsed post-program recovery period. This occurs by periodically activating control signals to turn on passive recovery switches to form a series of discharge pulses each dissipating a sub-threshold amount of charge. Such periodic pulsed dissipation may extend the duration of post-program recovery, but is not likely to be noticeable by the patient when the programming in the IPG changes from a first to a second program. Periodic pulsed dissipation of charge may also be used during a program, such as between stimulation pulses.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 6, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Goran N. Marnfeldt, Adam T. Featherstone
  • Patent number: 10786677
    Abstract: Multi-phasic fields are produced at a neuromodulation site using electrodes. A first phase is directed at a target region such that a first-polarity electrical charge is injected to the target region, and a second phase is directed at portions of the neuromodulation site other than the target region, such that a second-polarity electrical charge opposite the first-polarity electrical charge is injected to those portions of the neuromodulation site to essentially neutralize the first-polarity charge injected at the neuromodulation site while maintaining at least a portion of the first-polarity charge at the target region. In some embodiments, each anode used to produce the first phase is used as a cathode to produce the second phase, and each cathode used to produce the first phase is used as an anode to produce the second phase, and the quantity of charge injected by each electrode in both phases is essentially zero.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: September 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Tianhe Zhang, Rafael Carbunaru
  • Patent number: 10780274
    Abstract: This document discusses, among other things, systems and methods to provide a paresthesia therapy to a patient using an implantable neuromodulation system, wherein providing the paresthesia therapy may include delivering to the patient an electrical waveform having a duration and a distribution of frequencies in the range of 0.001 kHz to 20 kHz, wherein the distribution of frequencies includes a first frequency group of one or more frequencies and a second frequency group of one or more frequencies, and wherein the patient continuously experiences paresthesia throughout the duration of the electrical waveform.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: September 22, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Que T. Doan
  • Patent number: 10744325
    Abstract: A current generation architecture for an implantable stimulator device such as an Implantable Pulse Generator (IPG) is disclosed. Current source and sink circuitry are both divided into coarse and fine portions, which respectively can provide coarse and fine current resolutions to a specified electrode on the IPG. The coarse portion is distributed across all of the electrodes and so can source or sink current to any of the electrodes. The coarse portion is divided into a plurality of stages, each of which is capable via an associated switch bank of sourcing or sinking a coarse amount of current to or from any one of the electrodes on the device. The fine portion of the current generation circuit preferably includes source and sink circuitry dedicated to each of the electrode on the device, which can comprise digital-to-analog current converters (DACs).
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: August 18, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, David K. L. Peterson, Paul J. Griffith
  • Patent number: 10716937
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 21, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Publication number: 20200086125
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Publication number: 20200086126
    Abstract: A neuromodulation system configured for providing sub-threshold neuromodulation therapy to a patient. The neuromodulation system comprises a neuromodulation lead having at least one electrode configured for being implanted along a spinal cord of a patient, a plurality of electrical terminals configured for being respectively coupled to the at least one electrode, modulation output circuitry configured for delivering sub-threshold modulation energy to active ones of the at least one electrode, and control/processing circuitry configured for selecting a percentage from a plurality of percentages based on a known longitudinal location of the neuromodulation lead relative to the spinal cord, computing an amplitude value as a function of the selected percentage, and controlling the modulation output circuitry to deliver sub-threshold modulation energy to the patient at the computed amplitude value.
    Type: Application
    Filed: November 20, 2019
    Publication date: March 19, 2020
    Inventors: Jordi Parramon, Bradley L. Hershey, Dongchul Lee
  • Patent number: 10525266
    Abstract: An example of a system may include an electrode arrangement, a neural modulation generator configured to use electrodes in the electrode arrangement to generate a modulation field, a communication module configured to receive commands, a memory configured to store modulation field parameter data, and a controller configured to control the neural modulation generator to generate the modulation field. The controller may be configured to implement a trolling routine to troll the modulation field through neural tissue positions, and implement a marking routine multiple times as the modulation field is trolled through the neural tissue positions to identify when the modulation field provides patient-perceived modulation.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Bradley Lawrence Hershey, Changfang Zhu, Jordi Parramon, Sridhar Kothandaraman
  • Publication number: 20200001087
    Abstract: An example of a system may include electrodes on at least one lead configured to be operationally positioned for use in modulating a volume of neural tissue, where the neural tissue has an activation function. The system may further include a neural modulation generator configured to deliver energy using at least some electrodes to generate a modulation field within the volume of neural tissue. The neural modulation generator may be configured to use a programmed modulation parameter set to generate the modulation field. The programmed modulation parameter set having values selected to control energy delivery using the at least some electrodes to achieve an objective function specific to the activation function of the volume of neural tissue to promote uniformity of a response to the modulation field in the volume of neural tissue along a span of the at least one lead.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Jordi Parramon, Bradley Lawrence Hershey, Michael A. Moffitt, Changfang Zhu
  • Patent number: 10518091
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 10512778
    Abstract: A neuromodulation system configured for providing sub-threshold neuromodulation therapy to a patient. The neuromodulation system comprises a neuromodulation lead having at least one electrode configured for being implanted along a spinal cord of a patient, a plurality of electrical terminals configured for being respectively coupled to the at least one electrode, modulation output circuitry configured for delivering sub-threshold modulation energy to active ones of the at least one electrode, and control/processing circuitry configured for selecting a percentage from a plurality of percentages based on a known longitudinal location of the neuromodulation lead relative to the spinal cord, computing an amplitude value as a function of the selected percentage, and controlling the modulation output circuitry to deliver sub-threshold modulation energy to the patient at the computed amplitude value.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Bradley L. Hershey, Dongchul Lee
  • Publication number: 20190344079
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can adjust the charging current (Ibat) provided to the rechargeable battery over time (e.g., the life of the IMD) in accordance with one or more of the parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, estimates a change in the capacity of the battery, and adjust the charging current in one or both of trickle and active charging paths to slow the loss of battery capacity and extend the life of the IMD.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 14, 2019
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Publication number: 20190299007
    Abstract: A new architecture is disclosed for an IPG having a master and slave electrode driver integrated circuits (ICs). The electrode outputs on the ICs are wired together. Each IC can be programmed to provide pulses with different frequencies. Active timing channels in master and slave ICs are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other IC so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 10420950
    Abstract: An implantable pulse generator (IPG) allowing for trial stimulation in a fully implanted solution is disclosed. At the time the leads are implanted, a micro IPG having lead connection block(s) is also implanted and connected to the leads. To keep the micro IPG suitably small, it preferably does not include a battery, and is instead powered continuously via magnetic induction using a magnetic field produced by an external charger, such as a charging patch. A coil in the micro IPG picks up and rectifies this magnetic field to provide power to stimulating electronics in the IPG. Because of its small size (e.g., ?10 cm3), implantation of the micro IPG can occur at the same time the leads are implanted in the patient without inconvenience. Should stimulation therapy with the micro IPG prove effective, a larger, permanent IPG can later be implanted and connected to the implanted leads.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: September 24, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Anne Pianca, Bernard Malinowski, William G. Orinski
  • Patent number: 10391324
    Abstract: Compliance voltage generation circuitry for a medical device is disclosed. The circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A boost signal from compliance voltage monitor-and-adjust logic circuitry is processed with a telemetry enable signal to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 27, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Patent number: 10391301
    Abstract: Architectures for implantable stimulators having N electrodes are disclosed. The architectures contains X current sources, or DACs. In a single anode/multiple cathode design, one of the electrodes is designated as the anode, and up to X of the electrodes can be designated as cathodes and independently controlled by one of the X DACs, allowing complex patient therapy and current steering between electrodes. The design uses at least X decoupling capacitors: X capacitors in the X cathode paths, or one in the anode path and X?1 in the X cathode paths. In a multiple anode/multiple cathode design having X DACs, a total of X?1 decoupling capacitors are needed. Because the number of DACs X can typically be much less than the total number of electrodes (N), these architectures minimize the number of decoupling capacitors which saves space, and ensures no DC current injection even during current steering.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 27, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Rafael Carbunaru
  • Patent number: 10391313
    Abstract: Methods, devices and systems for developing new therapy options for patient suffering from neurological disorders. An example may include the use of a therapy patterning system that allows significant freedom to program therapy patterns using arbitrary shapes and functions. For such patterning to be implemented, a physician may identify a condition needing new and/or alternative therapy options, link the identified condition one or more therapy parameters, program, test and assess the therapy. The process may include multiple iterations to address an initial condition and then to mitigate side effects of the initial therapy. Some embodiments comprises devices configured to deliver combinations of therapy patterns to accomplish at least first and second therapeutic purposes.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 27, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, G. Karl Steinke, Sridhar Kothandaraman, Bradley Lawrence Hershey, Changfang Zhu, Jordi Parramon, Goran N. Marnfeldt, John Rivera, Stephen Carcieri
  • Patent number: 10391322
    Abstract: Timing channel circuitry for controlling stimulation circuitry in an implantable stimulator is disclosed. The timing channel circuitry comprises a addressable memory. Data for the various phases of a desired pulse are stored in the memory using different numbers of words, including a command indicative of the number of words in the phase, a next address for the next phase stored in the memory, and a pulse width or duration of the current phase, control data for the stimulation circuitry, pulse amplitude, and electrode data. The command data is used to address through the words in the current phase via the address bus, which words are sent to a control register for the stimulation circuitry. After the duration of the pulse width for the current phase has passed, the stored next address is used to access the data for the next phase stored in the memory.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 27, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Paul J. Griffith, Goran N. Marnfeldt, Jordi Parramon