Patents by Inventor Jorg F.W. Weber
Jorg F.W. Weber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12252652Abstract: Methylparaffins having limited methyl branching may be prepared by contacting at least one linear olefin with hydrogen in the presence of a dual-function supported catalyst comprising a solid acid component and a hydrogenation component under conditions sufficient to catalytically isomerize the at least one linear olefin into an intermediate product comprising one or more branched olefins, and hydrogenating the one or more branched olefins to form an isoparaffin product comprising one or more methylparaffins. Heat transfer fluids comprising such methylparaffins may be used in various thermal management systems, such as within various systems of electric vehicles, server farms, or other locales in need of efficient heat transfer.Type: GrantFiled: November 20, 2020Date of Patent: March 18, 2025Assignee: ExxonMobil Chemical Patents Inc.Inventors: Renyuan Yu, Wenyih F. Lai, Jorg F. W. Weber, Anatoly I. Kramer
-
Publication number: 20250075142Abstract: Alkylated naphthalene blendstock and processes for making the alkylated naphthalene blendstock are provided. The present processes comprise mixing an acid-form MWW-type catalyst, naphthalene, and a solvent to provide a reaction mixture and adding linear alpha olefins to the reaction mixture after heating. The resulting AN blendstock has an isomer ratio of less than 45 wt % mono alkylated naphthalene and greater than 55 wt % multi-alkylated naphthalene and can be combined with polyalphaolefin base stock to provide a synthetic lubricant formulation produced without triflic catalyst and with less process steps.Type: ApplicationFiled: August 29, 2024Publication date: March 6, 2025Inventors: Jorg F. W. Weber, Michael L. Blumenfeld, Harrison T. Hawkins, William W. Lonergan, Zachary D. Young, Sina Sartipi, Mabel G. Lam, Samuel J. Caterina
-
Publication number: 20230365850Abstract: Branched paraffins formed as a hydrogenated reaction product of one or more linear alpha olefins (LAOs) oligomerized with a BF3 catalyst system and comprising at least about 90 wt. % branched paraffin dimers may have advantageous heat transfer properties. Heat transfer fluids comprising the branched paraffins may be placed in contact with a heat- generating component, such as those found in electric vehicles, battery systems, and other locations in need of thermal management. Branched paraffin dimers formed from one or more LAOs having about 8 to about 12 carbon atoms may collectively have a Mouromtseff Number ranging from about 10,000 to about 16,000 kg/(s2.2.m0.6.K) at 80° C., a thermal conductivity at 80° C. of about 0.125 W/m.K or higher, and a flash point of about 140° C. or higher.Type: ApplicationFiled: September 28, 2021Publication date: November 16, 2023Inventors: Anatoly I. Kramer, Jorg F.W. Weber, Kyle G. Lewis, Behrouz Engheta, Heinrich R. Braun, Tobias Klande, Mark P. Hagemeister
-
Publication number: 20230066764Abstract: Methylparaffins having limited methyl branching may be prepared by contacting at least one linear olefin with hydrogen in the presence of a dual-function supported catalyst comprising a solid acid component and a hydrogenation component under conditions sufficient to catalytically isomerize the at least one linear olefin into an intermediate product comprising one or more branched olefins, and hydrogenating the one or more branched olefins to form an isoparaffin product comprising one or more methylparaffins. Heat transfer fluids comprising such methylparaffins may be used in various thermal management systems, such as within various systems of electric vehicles, server farms, or other locales in need of efficient heat transfer.Type: ApplicationFiled: November 20, 2020Publication date: March 2, 2023Inventors: Renyuan Yu, Wenyith F. Lai, Jorg F.W. Weber, Anatoly I. Kramer
-
Publication number: 20220267658Abstract: Methyl paraffins formed by hydrogenating one or more LAO dimers comprising a vinylidene moiety or a trisubstituted olefin moiety may have advantageous heat transfer properties, particularly when incorporated within an electric vehicle. For example, methyl paraffins produced upon hydrogenating LAO dimers formed from one or more C6-C12 LAOS, particularly in the presence of a Hf metallocene catalyst system, may contain 12-24 carbon atoms, and collectively have a flash point of about 130° C. or above, a pour point of about ?42° C. or lower, a thermal conductivity at 80° C. of about 0.165 W/m·K or higher, and a Mouromtseff number ranging from about 17,000 to about 27,000 kg/(s2.2·m0.6·K) at 80° C. Heat transfer fluids comprising such methyl paraffins may be placed in contact with a heat-generating component, such as a battery and/or motor of an electric vehicle, or within a similar type of battery system, including immersive configurations for a battery.Type: ApplicationFiled: June 25, 2020Publication date: August 25, 2022Inventors: Anatoly I. Kramer, Jorg F.W. Weber, Jennifer L. Rapp, Kyle G. Lewis, Patrick C. Chen, Behrouz Engheta, Heinrich R. Braun, Babak Lotfizadehdehkordi, Tobias Klande
-
Patent number: 11161812Abstract: Disclosed are novel processes for the production of cyclic imide compounds such as N-hydroxyphthalimide (NHPI). The processes may be particularly well-suited for commercial-scale production of cyclic imides such as NHPI. Such cyclic imide compounds are suitable for use as oxidation catalysts, and specifically may be used to oxidize cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide. Such an oxidation may be particularly useful in a process for the production of phenol and/or cyclohexanone from benzene via a process comprising hydroalkylation of benzene to cyclohexylbenzene, oxidation of the cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide, and cleavage of the cyclohexyl-1-phenyl-1-hydroperoxide to phenol and cyclohexanone. The cyclic imide production process may advantageously include water washing and reactant recovery steps to maximize purity and yield.Type: GrantFiled: April 18, 2017Date of Patent: November 2, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jörg F. W. Weber, Helge Jaensch, Andrew R. Witt, Christopher L. Becker, Kirk C. Nadler, Kendele S. Galvan, Amy B. Batton
-
Patent number: 11092393Abstract: This disclosure relates to heat transfer fluids for use in heat transfer systems. The heat transfer fluids comprise at least one non-aqueous dielectric heat transfer fluid. The non-aqueous dielectric heat transfer fluid has density (?), specific heat (cp), and dynamic viscosity (?) properties.Type: GrantFiled: June 4, 2020Date of Patent: August 17, 2021Assignee: ExxonMobil Research and Engineering CompanyInventors: Gary Christensen, Kevin J. Kelly, Shuji Luo, Heinrich R. Braun, Tobias Klande, Behrouz Engheta, Jorg F. W. Weber, Andrew E. Taggi
-
Patent number: 11014883Abstract: Disclosed are novel processes for the production of cyclic imide compounds such as N-hydroxyphthalimide (NHPI). The processes may be particularly well-suited for commercial-scale production of cyclic imides such as NHPI. Such cyclic imide compounds are suitable for use as oxidation catalysts, and specifically may be used to oxidize cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide. Such an oxidation may be particularly useful in a process for the production of phenol and/or cyclohexanone from benzene via a process comprising hydroalkylation of benzene to cyclohexylbenzene, oxidation of the cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide, and cleavage of the cyclohexyl-1-phenyl-1-hydroperoxide to phenol and cyclohexanone. The cyclic imide production process may advantageously include water washing and reactant recovery steps to maximize purity and yield.Type: GrantFiled: April 18, 2017Date of Patent: May 25, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jörg F. W. Weber, Helge Jaensch, Andrew R. Witt, Christopher L. Becker, Kirk C. Nadler, Kendele S. Galvan, Amy B. Batton
-
Patent number: 10941099Abstract: Disclosed are a process for abating 3-cyclohexenone from a feed mixture comprising 3-cylclohexenone and cyclohexanone, comprising a hydrogenation step of contacting the feed mixture with hydrogen in the presence of a hydrogenation catalyst under hydrogenation conditions to obtain a hydrogenated mixture, cyclohexanone-containing products comprising 3-cyclohexenone and/or 2-cyclohexenone at low concentrations, and compositions of matter useful for making such cyclohexanone-containing products, particularly by using such processes.Type: GrantFiled: April 24, 2018Date of Patent: March 9, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F. W. Weber, Ashley J. Malik
-
Patent number: 10752570Abstract: Disclosed are processes for abating 3-cyclohexenone from a feed mixture comprising cyclohexylbenzene, cyclohexanone, phenol, and 3-cyclohexenone and cyclohexanone, comprising feeding the feed mixture to a first distillation column and a hydrogenating a fraction from in the presence of a hydrogenation catalyst under hydrogenation conditions. Hydrogenation can be carried out in a hydrogenation reactor separate from the first distillation column or in a hydrogenation zone disposed inside the first distillation column.Type: GrantFiled: April 24, 2018Date of Patent: August 25, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F. W. Weber, Ashley J. Malik
-
Patent number: 10745336Abstract: Disclosed are processes for making cyclohexanone from a feed mixture comprising cyclohexylbenzene, cyclohexanone, phenol, 3-cylclohexenone and optionally 2-cyclohexenone, comprising feeding the feed mixture to a first distillation column and hydrogenating a fraction from the first distillation column in a hydrogenation reactor separate from the first distillation in the presence of a hydrogenation catalyst under hydrogenation conditions. A cyclohexanone-rich upper effluent comprising 3-cyclohexenone and 2-cyclohexenone at low concentrations can be obtained from the first distillation column.Type: GrantFiled: April 24, 2018Date of Patent: August 18, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F. W. Weber, Ashley J. Malik
-
Patent number: 10712105Abstract: This disclosure relates to heat transfer fluids for use in heat transfer systems. The heat transfer fluids comprise at least one non-aqueous dielectric heat transfer fluid. The non-aqueous dielectric heat transfer fluid has density (?), specific heat (cp), and dynamic viscosity (?) properties.Type: GrantFiled: June 20, 2019Date of Patent: July 14, 2020Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Gary Christensen, Kevin J. Kelly, Shuji Luo, Heinrich R. Braun, Tobias Klande, Behrouz Engheta, Jorg F. W. Weber, Andrew E. Taggi
-
Publication number: 20200190006Abstract: Disclosed are processes for abating 3-cyclohexenone from a feed mixture comprising cyclohexylbenzene, cyclohexanone, phenol, and 3-cylclohexenone and cyclohexanone, comprising feeding the feed mixture to a first distillation column and a hydrogenating a fraction from in the presence of a hydrogenation catalyst under hydrogenation conditions. Hydrogenation can be carried out in a hydrogenation reactor separate from the first distillation column or in a hydrogenation zone disposed inside the first distillation column.Type: ApplicationFiled: April 24, 2018Publication date: June 18, 2020Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F.W. Weber, Ashley C. Poucher
-
Publication number: 20200123088Abstract: Disclosed are a process for abating 3-cyclohexenone from a feed mixture comprising 3-cylclohexenone and cyclohexanone, comprising a hydrogenation step of contacting the feed mixture with hydrogen in the presence of a hydrogenation catalyst under hydrogenation conditions to obtain a hydrogenated mixture, cyclohexanone-containing products comprising 3-cyclohexenone and/or 2-cyclohexenone at low concentrations, and compositions of matter useful for making such cyclohexanone-containing products, particularly by using such processes.Type: ApplicationFiled: April 24, 2018Publication date: April 23, 2020Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F.W. Weber, Ashley J. Poucher
-
Publication number: 20200123089Abstract: Disclosed are processes for making cyclohexanone from a feed mixture comprising cyclohexylbenzene, cyclohexanone, phenol, 3-cylclohexenone and optionally 2-cyclohexenone, comprising feeding the feed mixture to a first distillation column and hydrogenating a fraction from the first distillation column in a hydrogenation reactor separate from the first distillation in the presence of a hydrogenation catalyst under hydrogenation conditions. A cyclohexanone-rich upper effluent comprising 3-cyclohexenone and 2-cyclohexenone at low concentrations can be obtained from the first distillation column.Type: ApplicationFiled: April 24, 2018Publication date: April 23, 2020Inventors: Kendele S. Galvan, Christopher L. Becker, Jörg F.W. Weber, Ashley J. Poucher
-
Patent number: 10570079Abstract: Disclosed are processes for making such cyclohexanone compositions from a mixture comprising phenol, cyclohexanone, and cyclohexylbenzene. Such cyclohexanone compositions comprise at least 99 wt % cyclohexanone, at most 0.15 wt % water, and at most 500 wppm combined of certain cyclohexanone impurities selected from the group consisting of: benzene, cyclohexene, pentanal, cyclopentanol, cyclohexanol, and phenol.Type: GrantFiled: February 20, 2019Date of Patent: February 25, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: Ashley J. Malik, Jörg F. W. Weber, Medrado M. Leal
-
Patent number: 10351506Abstract: This disclosure relates to methods for producing purified aromatic esters useful as plasticizers, to the purified aromatic esters, and to polymer compositions containing the purified esters. The purified aromatic esters can be produced by esterifying carboxylic acid with methyl or ethyl alcohol, separating the resulting methyl or ethyl esters from the carboxylic acid and any byproduct impurities, and then transesterifying the methyl or ethyl esters with C4 to C14 alcohol to produce the purified aromatic esters. Additionally, precipitation, filtration, and wash steps can be employed to purify the carboxylic acid, the methyl or ethyl alcohol, and/or the aromatic esters.Type: GrantFiled: April 11, 2017Date of Patent: July 16, 2019Assignee: ExxonMobil Chemical Patents Inc.Inventors: Mika L. Shiramizu, Stephen Zushma, Jörg F. W. Weber, Neeraj Sangar
-
Publication number: 20190185403Abstract: Disclosed are processes for making such cyclohexanone compositions from a mixture comprising phenol, cyclohexanone, and cyclohexylbenzene. Such cyclohexanone compositions comprise at least 99 wt % cyclohexanone, at most 0.15 wt % water, and at most 500 wppm combined of certain cyclohexanone impurities selected from the group consisting of: benzene, cyclohexene, pentanal, cyclopentanol, cyclohexanol, and phenol.Type: ApplicationFiled: February 20, 2019Publication date: June 20, 2019Inventors: Ashley J. Malik, Jörg F.W. Weber, Medrado M. Leal
-
Publication number: 20190152911Abstract: Disclosed are novel processes for the production of cyclic imide compounds such as N-hydroxyphthalimide (NHPI). The processes may be particularly well-suited for commercial-scale production of cyclic imides such as NHPI. Such cyclic imide compounds are suitable for use as oxidation catalysts, and specifically may be used to oxidize cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide. Such an oxidation may be particularly useful in a process for the production of phenol and/or cyclohexanone from benzene via a process comprising hydroalkylation of benzene to cyclohexylbenzene, oxidation of the cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide, and cleavage of the cyclohexyl-1-phenyl-1-hydroperoxide to phenol and cyclohexanone. The cyclic imide production process may advantageously include water washing and reactant recovery steps to maximize purity and yield.Type: ApplicationFiled: April 18, 2017Publication date: May 23, 2019Inventors: Jörg F. W. Weber, Helge Jaensch, Andrew R. Witt, Christopher L. Becker, Kirk C. Nadler, Kendele S. Galvan, Amy B. Batton
-
Patent number: 10294178Abstract: In a process for separating a mixture comprising cyclohexanone and phenol, a solid-phase basic material, such as basic ion-exchange resin, is used to remove acid and/or sulfur from the mixture prior to separation. The process results in reduced amount of contamination such as cyclic ethers in the cyclohexanone and/or phenol products.Type: GrantFiled: January 15, 2016Date of Patent: May 21, 2019Assignee: ExxonMobil Chemical Patents Inc.Inventors: Keith H. Kuechler, Jörg F. W. Weber, Ashley J. Poucher, Jason D. Davis