Patents by Inventor Jorg Horzel

Jorg Horzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230246167
    Abstract: The subject matter of the present invention is a method for producing a silicon-carbon composite material. The composite material can be used as an active material for the negative electrode of lithium-ion batteries on a silicon basis or processed further to form such an active material. In the case of use as a lithium store, the composite material is characterized by a particularly high specific capacity and a charging and discharging cycle-dependent life span which is particularly long.
    Type: Application
    Filed: June 2, 2021
    Publication date: August 3, 2023
    Inventors: Harald Gentischer, Daniel Biro, Peter Haberzettl, Mathias Drews, Jörg Horzel, Lukas Dold
  • Patent number: 8481419
    Abstract: A method for producing an electrically conducting metal contact on a semiconductor component having a coating on the surface of a semiconductor substrate. In order to keep transfer resistances low while maintaining good mechanical strength, the invention proposes applying a particle-containing fluid onto the coating, where the particles contain at least metal particles and glass frits, curing the fluid while simultaneously forming metal areas in the substrate through heat treatment, removing the cured fluid and the areas of the coating covered by the fluid, and depositing, for the purposes of forming the contact without using intermediate layers, electrically conducting material from a solution onto areas of the semiconductor component in which the coating is removed while at the same time conductively connecting the metal areas present in said areas on the substrate.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: July 9, 2013
    Assignee: SHOTT Solar AG
    Inventors: Jorg Horzel, Gunnar Schubert, Stefan Dauwe, Peter Roth, Tobias Droste, Wilfried Schmidt, Ingrid Ernst
  • Publication number: 20110201196
    Abstract: A method for producing an electrically conducting metal contact on a semiconductor component having a coating on the surface of a semiconductor substrate. In order to keep transfer resistances low while maintaining good mechanical strength, the invention proposes applying a particle-containing fluid onto the coating, where the particles contain at least metal particles and glass frits, curing the fluid while simultaneously forming metal areas in the substrate through heat treatment, removing the cured fluid and the areas of the coating covered by the fluid, and depositing, for the purposes of forming the contact without using intermediate layers, electrically conducting material from a solution onto areas of the semiconductor component in which the coating is removed while at the same time conductively connecting the metal areas present in said areas on the substrate.
    Type: Application
    Filed: November 26, 2009
    Publication date: August 18, 2011
    Applicant: SCHOTT SOLAR AG
    Inventors: Jorg Horzel, Gunnar Schubert, Stefan Dauwe, Peter Roth, Tobias Droste, Wilfried Schmidt, Ingrid Ernst
  • Patent number: 6825104
    Abstract: The present invention describes a method of manufacturing a semiconductor device, comprising a semiconductor substrate in the shape of a slice, the method comprising the steps of: step 1) selectively applying a pattern of a solids-based dopant source to a first major surface of said semiconducting substrate; step 2) diffusing the dopant atoms from said solids-based dopant source into said substrate by a controlled heat treatment step in a gaseous environment surrounding said semi-conducting substrate, the dopant from said solids-based dopant source diffusing directly into said substrate to form a first diffusion region and, at the same time, diffusing said dopant from said solids-based dopant source indirectly via said gaseous environment into said substrate to form a second diffusion region in at least some areas of said substrate to form a second diffusion region in at least some areas of said substrate not covered by said pattern; and step 3) forming a metal contact pattern substantially in alignment with
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: November 30, 2004
    Assignee: Interuniversitair Micro-Elektronica Centrum (IMEC)
    Inventors: Jörg Horzel, Jozef Szlufcik, Mia Honoré, Johan Nijs
  • Publication number: 20030134469
    Abstract: The present invention describes a method of manufacturing a semiconductor device, comprising a semiconductor substrate in the shape of a slice, the method comprising the steps of: step 1) selectively applying a pattern of a solids-based dopant source to a first major surface of said semiconducting substrate; step 2) diffusing the dopant atoms from said solids-based dopant source into said substrate by a controlled heat treatment step in a gaseous environment surrounding said semi-conducting substrate, the dopant from said solids-based dopant source diffusing directly into said substrate to form a first diffusion region and, at the same time, diffusing said dopant from said solids-based dopant source indirectly via said gaseous environment into said substrate to form a second diffusion region in at least some areas of said substrate to form a second diffusion region in at least some areas of said substrate not covered by said pattern; and step 3) forming a metal contact pattern substantially in alignment with
    Type: Application
    Filed: January 27, 2003
    Publication date: July 17, 2003
    Applicant: IMEC vzw, a research center in the country of Belgium
    Inventors: Jorg Horzel, Jozef Szlufcik, Mia Honore, Johan Nijs
  • Patent number: 6552414
    Abstract: The present invention describes a method of manufacturing a semiconductor device, comprising a semiconductor substrate (2) in the shape of a slice, the method comprising the steps of: step 1) selectively applying a pattern of a solids-based dopant source to a first major surface of said semiconducting substrate (2); step 2) diffusing the dopant atoms from said solids-based dopant source into said substrate (2) by a controlled heat treatment step in a gaseous environment surrounding said semi-conducting substrate (2), the dopant from said solids-based dopant source diffusing directly into said substrate (2) to form a first diffusion region (12) and, at the time, diffusing said dopant from said solids-based dopant source indirectly via said gaseous environment into said substrate (2) to form a second diffusion region (15) in at least some areas of said substrate (2) not covered by said pattern; and step 3) forming a metal contact pattern (20) substantially in alignment with said first diffusion region (12) with
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: April 22, 2003
    Assignee: IMEC vzw
    Inventors: Jörg Horzel, Jozef Szlufcik, Mia Honoré, Johan Nijs
  • Patent number: 6251756
    Abstract: An open apparatus is described for the processing of planar thin semiconductor substrates, particularly for the processing of solar cells. The apparatus includes a first zone for the drying and burn-out of organic components from solid or liquid based dopant sources pre-applied to the substrates. The zone is isolated from the remaining zones of the apparatus by an isolating section to prevent cross-contamination between burn-out zone and the remaining processing zones. All the zones of the apparatus may be formed from a quartz tube around which heaters are placed for raising the temperature inside the quartz tube. Each zone may be purged with a suitable mixture of gases, e.g. inert gases such as argon, as well as oxygen and nitrogen. The zones may also be provided with gaseous dopants such as POCl3 and the present invention includes the sequential diffusion of more than one dopant into the substrates. Some of the zones may be used for driving-in the dopants alternatively, for other processes, e.g. oxidation.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: June 26, 2001
    Assignee: Interuniversitair Micro-Elektronica Centrum (IMEC vzw)
    Inventors: Jörg Horzel, Jozef Szlufcik, Johan Nijs
  • Patent number: 6117266
    Abstract: An open apparatus is described for the processing of planar thin semiconductor substrates, particularly for the processing of solar cells. The apparatus includes a first zone for the drying and burn-out of organic components from solid or liquid based dopant sources pre-applied to the substrates. The zone is isolated from the remaining zones of the apparatus by an isolating section to prevent cross-contamination between burn-out zone and the remaining processing zones. All the zones of the apparatus may be formed from a quartz tube around which heaters are placed for raising the temperature inside the quartz tube. Each zone may be purged with a suitable mixture of gases, e.g. inert gases such as argon, as well as oxygen and nitrogen. The zones may also be provided with gaseous dopants such as POCl.sub.3 and the present invention includes the sequential diffusion of more than one dopant into the substrates. Some of the zones may be used for driving-in the dopants alternatively, for other processes, e.g.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: September 12, 2000
    Assignee: Interuniversifair Micro-Elektronica Cenirum (IMEC VZW)
    Inventors: Jorg Horzel, Jozef Szlufcik, Johan Nijs