Patents by Inventor Jorge Aurelio Santa Cruz Pastor

Jorge Aurelio Santa Cruz Pastor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9383465
    Abstract: A method for quantitative analysis of time-lapse seismic data of a reservoir, including: obtaining a plurality of compressional and shear velocities from a seismic inversion analysis; selecting a rock physics model based on a property of the reservoir; calculating a transform function using the rock physics model, where the transform function transforms variations in the plurality of compressional and shear velocities into variations in saturation and pore pressure; calculating a transform grid performing a domain transformation of the transform function; obtaining a plurality of cloud points from the seismic inversion analysis and the transform grid; and overlaying the plurality of cloud points onto the transform grid to estimate a plurality of reservoir parameters of the reservoir.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 5, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Marcelo Frydman, Carlos Eduardo Borges De Salles Abreu, Rodrigo Portugal, Jorge Aurelio Santa Cruz Pastor
  • Patent number: 8768671
    Abstract: A system and method for optimizing a drilling operation is provided. The system has a drilling a drilling operation optimization unit. The drilling operation optimization unit has a base model unit for producing a base model of the reservoir and a reservoir stress unit for producing a three dimensional stress model of the reservoir. The drilling operation optimization unit has a trajectory unit for determining at least one property for at least one wellbore trajectory based on the base model and the three dimensional stress model, wherein each of the wellbore trajectories is selectable by an operator. The system has an operator station for inputting data into the drilling operation optimization unit at the wellsite and a drilling tool for forming a wellbore along at least one of the at least one selected wellbore trajectories.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: July 1, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Donald W. Lee, Jose Ignacio Adachi, John R. Waggoner, Carmen Elena Alvarez, Jorge Aurelio Santa Cruz Pastor
  • Publication number: 20130246022
    Abstract: A method for a waterflooding operation in a subterranean formation includes determining a first maximum injection pressure based on an analytical model to avoid out-of-zone fracture propagation. A second maximum injection pressure is determined based on the analytical model to avoid fracture reactivation. The waterflooding operation is performed based at least on the first maximum injection pressure and the second maximum injection pressure.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 19, 2013
    Applicant: Schlumberger Technology Corporation
    Inventors: Marcelo Frydman, Jorge Aurelio Santa Cruz Pastor, Antonio Luiz Serra de Souza
  • Publication number: 20110264429
    Abstract: A system and method for optimizing a drilling operation is provided. The system has a drilling a drilling operation optimization unit. The drilling operation optimization unit has a base model unit for producing a base model of the reservoir and a reservoir stress unit for producing a three dimensional stress model of the reservoir. The drilling operation optimization unit has a trajectory unit for determining at least one property for at least one wellbore trajectory based on the base model and the three dimensional stress model, wherein each of the wellbore trajectories is selectable by an operator. The system has an operator station for inputting data into the drilling operation optimization unit at the wellsite and a drilling tool for forming a wellbore along at least one of the at least one selected wellbore trajectories.
    Type: Application
    Filed: September 20, 2010
    Publication date: October 27, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Donald W. Lee, Jose Ignacio Adachi, John R. Waggoner, Carmen Elena Alvarez, Jorge Aurelio Santa Cruz Pastor
  • Patent number: 7653488
    Abstract: Predicting sand production in a wellbore. A first set of characteristics is determined for a formation in the wellbore, wherein determining uses a plastic model of the formation, and wherein the first set of characteristics comprises a yield surface, a failure surface, a stress total strain, an elastic strain, and a plastic-strain relationship. A relationship among a second set of characteristics of the wellbore is determined using an effective stress model, wherein the second set comprises a drawdown pressure, a production rate, pore pressure, a temperature and a viscosity of a fluid in the wellbore, a fluid flow pressure in the wellbore, a drag force of fluid flow in the wellbore, and a type of fluid flow in the wellbore. A critical total strain is determined for the formation using the first set of characteristics and the relationship. The critical total strain is calibrated using a thick wall test.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Ali I. Mese, Colin Michael Sayers, Robert Andrew Holicek, Dan Shan, Donald W. Lee, Jorge Aurelio Santa Cruz Pastor
  • Publication number: 20090055098
    Abstract: Predicting sand production in a wellbore. A first set of characteristics is determined for a formation in the wellbore, wherein determining uses a plastic model of the formation, and wherein the first set of characteristics comprises a yield surface, a failure surface, a stress total strain, an elastic strain, and a plastic-strain relationship. A relationship among a second set of characteristics of the wellbore is determined using an effective stress model, wherein the second set comprises a drawdown pressure, a production rate, pore pressure, a temperature and a viscosity of a fluid in the wellbore, a fluid flow pressure in the wellbore, a drag force of fluid flow in the wellbore, and a type of fluid flow in the wellbore. A critical total strain is determined for the formation using the first set of characteristics and the relationship. The critical total strain is calibrated using a thick wall test.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 26, 2009
    Inventors: Ali I. Mese, Colin Michael Sayers, Robert Andrew Holicek, Dan Shan, Donald W. Lee, Jorge Aurelio Santa Cruz Pastor