Patents by Inventor Jorge R. Barrio

Jorge R. Barrio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10626083
    Abstract: A method of manufacturing 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)-malononitrile ([F-18]FDDNP) utilizes a semi-automated module that is used to perform fluorination, pre-purification, separation, product extraction, and formulation. The method is able to produce [F-18]FDDNP with high yields and ready for human administration under existing FDA regulations, and without the need for hazardous organic solvents such as dichloromethane (DCM), methanol (MeOH), and tetrahydrofuran (THF). The method also improves the speed with which [F-18]FDDNP can be synthesized with the method being able to generate a final product within about 90 to 100 minutes. This synthesis method is easily adaptable to FDA registered and approved automated synthesis systems.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 21, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nagichettiar Satyamurthy, Jie Liu, Jorge R. Barrio
  • Publication number: 20190322616
    Abstract: A method of manufacturing 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)-malononitrile ([F-18]FDDNP) utilizes a semi-automated module that is used to perform fluorination, pre-purification, separation, product extraction, and formulation. The method is able to produce [F-18]FDDNP with high yields and ready for human administration under existing FDA regulations, and without the need for hazardous organic solvents such as dichloromethane (DCM), methanol (MeOH), and tetrahydrofuran (THF). The method also improves the speed with which [F-18]FDDNP can be synthesized with the method being able to generate a final product within about 90 to 100 minutes. This synthesis method is easily adaptable to FDA registered and approved automated synthesis systems.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nagichettiar Satyamurthy, Jie Liu, Jorge R. Barrio
  • Patent number: 10377701
    Abstract: A method of manufacturing 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)-malononitrile ([F-18]FDDNP) utilizes a semi-automated module that is used to perform fluorination, pre-purification, separation, product extraction, and formulation. The method is able to produce [F-18]FDDNP with high yields and ready for human administration under existing FDA regulations, and without the need for hazardous organic solvents such as dichloromethane (DCM), methanol (MeOH), and tetrahydrofuran (THF). The method also improves the speed with which [F-18]FDDNP can be synthesized with the method being able to generate a final product within about 90 to 100 minutes. This synthesis method is easily adaptable to FDA registered and approved automated synthesis systems.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: August 13, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nagichettiar Satyamurthy, Jie Liu, Jorge R. Barrio
  • Patent number: 10357217
    Abstract: A method of using PET imaging includes using PET images obtained using a radiotracer for the determination of the progressive course of regional brain PET activities for a progressive neurodegenerative disease (e.g., MCI, AD, and CTE). The method may be used for the automatic staging of neurodegenerative disease for a particular patient/subject based on regional intensity and spatial patterns of the brain signals measured by PET imaging. The method may also be used to diagnose or classify the disease of a patient among multiple possibilities based on PET imaging profiles (e.g., for separating or distinguishing CTE from AD).
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 23, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Sung-Cheng Huang, Koon-Pong Wong, Gary W. Small, Jorge R. Barrio
  • Publication number: 20180127355
    Abstract: A method of manufacturing 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)-malononitrile ([F-18]FDDNP) utilizes a semi-automated module that is used to perform fluorination, pre-purification, separation, product extraction, and formulation. The method is able to produce [F-18]FDDNP with high yields and ready for human administration under existing FDA regulations, and without the need for hazardous organic solvents such as dichloromethane (DCM), methanol (MeOH), and tetrahydrofuran (THF). The method also improves the speed with which [F-18]FDDNP can be synthesized with the method being able to generate a final product within about 90 to 100 minutes. This synthesis method is easily adaptable to FDA registered and approved automated synthesis systems.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 10, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nagichettiar Satyamurthy, Jie Liu, Jorge R. Barrio
  • Publication number: 20180103921
    Abstract: A method of using PET imaging includes using PET images obtained using a radiotracer for the determination of the progressive course of regional brain PET activities for a progressive neurodegenerative disease (e.g., MCI, AD, and CTE). The method may be used for the automatic staging of neurodegenerative disease for a particular patient/subject based on regional intensity and spatial patterns of the brain signals measured by PET imaging. The method may also be used to diagnose or classify the disease of a patient among multiple possibilities based on PET imaging profiles (e.g., for separating or distinguishing CTE from AD).
    Type: Application
    Filed: October 18, 2017
    Publication date: April 19, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Sung-Cheng Huang, Koon-Pong Wong, Gary W. Small, Jorge R. Barrio
  • Patent number: 9481705
    Abstract: A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: November 1, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio, Bernard Amarasekera, R. Michael Van Dam, Sebastian Olma, Dirk Williams, Mark Eddings, Clifton Kwang-Fu Shen
  • Publication number: 20160130295
    Abstract: A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 12, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio, Bernard Amarasekera, R. Michael Van Dam, Sebastian Olma, Dirk Williams, Mark Eddings, Clifton Kwang-Fu Shen
  • Patent number: 9211520
    Abstract: A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 15, 2015
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio, Bernard Amarasekera, R. Michael Van Dam, Sebastian Olma, Dirk Williams, Mark Eddings, Clifton Kwang-Fu Shen
  • Publication number: 20150329583
    Abstract: A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures.
    Type: Application
    Filed: December 24, 2014
    Publication date: November 19, 2015
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio, Bernard Amarasekera, R. Michael Van Dam, Sebastian Olma, Dirk Williams, Mark Eddings, Clifton Kwang-Fu Shen
  • Patent number: 8951480
    Abstract: A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: February 10, 2015
    Assignee: The Regents of the University of California
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio, Bernard Amarasekera, R. Michael Van Dam, Sebastian Olma, Dirk Williams, Mark A. Eddings, Clifton Kwang-Fu Shen
  • Patent number: 8845999
    Abstract: Radiolabeled tracers for sodium/glucose cotransporters (SGLTs), their synthesis, and their use are provided. The tracers are methyl or ethyl pyranosides having an equatorial hydroxyl group at carbon-2 and a C 1 preferred conformation, radiolabeled with 18F, 123I, or 124I, or free hexoses radiolabeled with 18F, 123I, or 124. Also provided are in vivo and in vitro techniques for using these and other tracers as analytical and diagnostic tools to study glucose transport, in health and disease, and to evaluate therapeutic interventions.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: September 30, 2014
    Assignee: The Regents of the University of California
    Inventors: Ernest M. Wright, Jorge R. Barrio, Bruce A. Hirayama, Vladimir Kepe
  • Publication number: 20140271474
    Abstract: Radiolabeled tracers for binding to sodium/glucose cotransporters (SGLTs), and their synthesis, are provided. The tracers are high-affinity inhibitors of SGLTs, glycosides labeled with radioactive halogens. Also provided are in vivo and in vitro techniques for using the tracers as analytical tools to study the biodistribution and regulation of SGLTs in health and disease, and to evaluate therapeutic interventions. The ability to monitor radiolabel tracer disposition in real time enables the design of new SGLT inhibitors with lower metabolism and higher efficiency.
    Type: Application
    Filed: June 14, 2012
    Publication date: September 18, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ernest M. Wright, Jorge R. Barrio
  • Patent number: 8742139
    Abstract: Phenyliodonium ylide derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are shown for use as precursors in aromatic nucleophilic substitution reactions. The iodonium ylide group is substituted by nucleophiles such as halide ions to provide the corresponding haloaryl derivatives. No-carrier-added [F-18]fluoride ion exclusively substitutes the iodonium ylide moiety in these derivatives and provides high specific activity F-18 labeled fluoro derivatives. Protected L-dopa-6-iodonium ylide derivative have been synthesized as a precursors for the preparation of no-carrier-added 6-[F-18]fluoro-L-dopa. The iodonium ylide group in this L-dopa.derivative is nucleophilically substituted by no-carrier-added [F-18]fluoride ion to provide a [F-18]fluoro intermediates which upon acid hydrolysis yielded 6-[F-18]fluoro-L-dopa.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: June 3, 2014
    Assignee: The Regents of The University of California
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio
  • Patent number: 8674101
    Abstract: Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me4NF, Et4NF, n-Bu4NF, (PhCH2)4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: March 18, 2014
    Assignee: The Regents of the University of California
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio
  • Patent number: 8372380
    Abstract: Radiolabeled tracers for sulfotransferases (SULTs), their synthesis, and their use are provided. Included are substituted phenols, naphthols, coumarins, and flavones radiolabeled with 18F, 123I, 124I, 125I, or 11C. Also provided are in vivo techniques for using these and other tracers as analytical and diagnostic tools to study sulfotransferase distribution and activity, in health and disease, and to evaluate therapeutic interventions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: February 12, 2013
    Assignee: The Regents of the University of California
    Inventors: Jorge R. Barrio, Vladimir Kepe, Gary W. Small, Nagichettiar Satyamurthy
  • Publication number: 20120123120
    Abstract: Phenyliodonium ylide derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are shown for use as precursors in aromatic nucleophilic substitution reactions. The iodonium ylide group is substituted by nucleophiles such as halide ions to provide the corresponding haloaryl derivatives. No-carrier-added [F-18]fluoride ion exclusively substitutes the iodonium ylide moiety in these derivatives and provides high specific activity F-18 labeled fluoro derivatives. Protected L-dopa-6-iodonium ylide derivative have been synthesized as a precursors for the preparation of no-carrier-added 6-[F-18]fluoro-L-dopa. The iodonium ylide group in this L-dopa.derivative is nucleophilically substituted by no-carrier-added [F-18]fluoride ion to provide a [F-18]fluoro intermediates which upon acid hydrolysis yielded 6-[F-18]fluoro-L-dopa.
    Type: Application
    Filed: April 1, 2010
    Publication date: May 17, 2012
    Applicant: The Regents of the University of California
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio
  • Publication number: 20120107175
    Abstract: A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures.
    Type: Application
    Filed: August 19, 2009
    Publication date: May 3, 2012
    Applicant: The Regents of the Univeristy of California
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio, Bernard Amarasekera, R. Michael Van Dam, Sebastian Olma, Dirk Williams, Mark A. Eddings, Clifton Kwang-Fu Shen
  • Publication number: 20110178302
    Abstract: Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me4NF, Et4NF, n-Bu4NF, (PhCH2)4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.
    Type: Application
    Filed: July 13, 2009
    Publication date: July 21, 2011
    Applicant: The Regents of the University of California
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio
  • Publication number: 20100135906
    Abstract: Radiolabeled tracers for sulfotransferases (SULTs), their synthesis, and their use are provided. Included are substituted phenols, naphthols, coumarins, and flavones radiolabeled with 18F, 123I, 124I, 125I, or 11C. Also provided are in vivo techniques for using these and other tracers as analytical and diagnostic tools to study sulfotransferase distribution and activity, in health and disease, and to evaluate therapeutic interventions.
    Type: Application
    Filed: March 31, 2008
    Publication date: June 3, 2010
    Inventors: Jorge R. Barrio, Vladimir Kepe, Small W. Gary, Nagichettiar Satyamurthy